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1 Technical Status Report

The project achieved all key goals. This effort has accomplished work to show how to
create real-time network of workstations (NOWs).

1.1 Key technical achievements

1. Developed predictable Myrinet communication for use in a real-time
NOW.

Thesis: Predictability and Performance factors influencing the design
of real-time messaging layers. S. Chakravarthi, MS. Thesis,
Mississippi State University, 2000.

Achieved message transfer latencies of 30pus without requiring initial
handshaking. .

Developed Myrinet drivers tailored to provide deterministic DMA
latencies to improve real-time performance.

Developed 1-copy message transfer using shared memory mapped to
the Myrinet NIC.

2.  Developed the MSU-Kernel to provide a POSIX OS for real-time NOWs.
The achievements include:

Published paper: Time-based Linux for Real-Time NOWs and MPI/RT. M.
Apte, S. Chakravarti, A. Pillai, A. Skjellum, and X. Zan. In IEEE Real-Time
Systems Symposium, Phoenix AZ, Dec 1999.

Developed a real-time scheduler that supports non-real-time tasks,
hard real-time tasks, and greedy real-time tasks.

Utilized the processor’s APIC timer to reduce scheduling granularity
to 30ns.

Achieved scheduling overhead of no more than 10m s for 8K-byte
messages.

Achieved message latency jitter of no more than 30ms.

Project report: A Real-Time Message Layer over Myrinet Networks.
X. Zan, MS. Project Report, Mississippi State University, 2000.

3. Developed and implemented an algorithm for deploying a globally
synchronized clock in a real-time NOW.

Paper: A Fine-Grain Clock Synchronization Mechanism for QoS
Based Communication on Myrinet. S. Chakravarthi, A. Pillai, J.
Padmanabhan, M. Apte, and A. Skjellum. . Submitted to the 21
International Conference on Distributed Computing Systems
(ICDCS-21). http://www.cs.msstate.edu/ " tony/documents/Message-
Passing/ICDCS2001-GClock.pdf




-

» Paper: A Synchronized Real-Time Linux Based Myrinet Cluster for
Deterministic High Performance Computing and MPI/RT. M. Apte,
S. Chakravarthi, J. Padmanabhan, and A. Skjellum. Submitted to
the Ninth International Workshop on Parallel and Distributed Real-
Time Systems (WPDRTS 2001).
http://www.cs.msstate.edu/"tony/documents/Message-
Passing/WPDRTS-2001.pdf

* Devised an algorithm to synchronize clock in a NOW by sending
periodic, low-overhead Myrinet messages with predictable latency
over a single Myrinet switch.

e The CPUs were synchronized to within +5ps of each other.

* Demonstrated high-performance predictable zero-sided messaging
using global schedules

4.  Developed an improved real-time scheduler for the Maruti hard real-time
operating system at University of Maryland (UMD).

e Utilized the APIC countdown timer to improve the accuracy of
dispatching.

* Developed a “double-interrupt” mechanism to pre-load the level-1
cache in order to reduce the variability of dispatch times.

5. Introduced a new parametric approach in Maruti for dynamic scheduling
at UMD.

* This scheduling technique allows the specification of a wide variety of
timing constraints (e.g., ready time, deadline, communication
constraint, mutual exclusion, together, and relative timing).

* The dynamic scheduling capability of this approach allows the ability
to add aperiodic tasks at runtime and to modify scheduling decisions at
runtime depending on the characteristics of executing tasks.

1.2  Key Publications

Details regarding the results of this work are presented in the papers, thesis, and project
reports attached with this report.




2 Business Report

2.1 Expenses: (4/1/96 — 12/31/99)

Mississippi State University

University of Maryland
Salary and Wages 228,195.62
Fringes 42,242.25
Travel 8,863.19
Commodities 8,608.99
Equipment 15,219.00
Other Direct Costs 4,824.14
Overhead” 138,196.81
Total $446,150.00

Salary 393,922.53
Wages 34,376.61
Fringes 86,105.66
Travel 72,989.53
Subcontract 446,150.00
Contractual 44,028.36
Commodities 1,616.33
Equipment 58,906.98
Overhead 225,280.00
Total

$1,363,376.00
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Time Based Linux for Real-Time
-NOWs and MPI/RT

Manoj Apte, Srigurunath ChakravarthJ
Anand Pillai,

Anthony Skjellum, Xin Yan Zan
Department of Computer Science and
NSF Engineering Research Center
Mississippi State University. MS 39762

{manoj,ecap,anand,tony,xyz} @erc.msstate.edu

Abstract

The Real-Time Message Passing Interface
(MPI/RT) is a communication layer middleware
standard that is aimed at providing guaranteed
Quality of Service for data transfers on high
performance networks. It poses “middleout”
requirements both on applications and on the
operating system. In this paper, we consider the
“middledown” issues by modifying a POSIX
compliant operating system in order to support hard
real time scheduling, a feature needed for efficient

MPI/RT on real-time Networks of Workstations

(NOWs). This paper describes the evolution of Turtle,
a variant of RT-Linux, that will later support a

prototype implementation of time-driven  MPI/RT.

Analysis, design approach, and results for T urtle are
discussed.

1. Introduction

Commodity desktop machines are ﬁow ':powerfull

enough to handle several tasks concurrently through
time sharing. It is feasible to use such workstations for

performing - Quality-of-Service (QoS) sensitive tasks:

while still allowing interactive tasks in the foreground.
Integrated ~ with a high-performance - network
supporting real-time protocols, one can also envision
real-time Networks of Workstations (NOWs) used for
distributed real-time computing, while . serving as
standard desktops. This paper describes the design of
Turtle, a time-based operating system to manage
synchronized real-time clusters of workstations.
MPVI/RT is an emerging real-time message passing
standard, that may become the de-facto standard for
high performance distributed real-time applications[3).
The standard prescribes the design for a middle-ware
message passing layer to support message passing

with guaranteed Quality of Service (QoS). The MPI/RT
programmmg model is fairly distinct from the current
practices in embedded and distributed real-time system
design in being much more conducive to portablhty and
providing hard real-time guarantees based on priorities,
events and time. This poses several new requirements
on the features provided by the underlying real-time
operating system, which we aim to satisfy through
Turtle.

There are several real-time operating systems
available commercially. VxWorks, pSOS, QNX,
LynxOS and RT-Linux [1] are priority based systems.
Microsoft's RealTo, RT-Mach [2], MARUTI and
MARS are examples of systems scheduling tasks based
on time. The RT-Mach resource reservation model
comes closest to satisfying the requirements of
MPI/RT. Turtle incorporates a hybrid form of the RT-
Mach reservation model and the Rate Controlling
model by Yau and Lam [4] into a cluster of Myrinet [5]
based Linux workstations. Existing messaging layers
over Myrinet can not, in general provide predictable-
latency message transfer in the presence of shared
resources such as the PCI bus, RAM, and network
switches. Our RT messaging sub-system provides
bounded end-to-end message latency by eliminating
resource contention. The messaging layer includes
channel, QoS, and buffer abstractions which directly
correspond to those in MPI/RT, to ensure a hlghly
optimized middle-ware library.

2. Design

The current laboratory setup consists of 2 clusters of
dual-capable 200 MHz Pentium Pro machines with
128MB RAM, 2 GB SCSI disk, and Myrinet network
using the LANai 4.0 cards. The Turtle system is based
on the Linux 2.0.30 and RT-Linux 0.5. The Pentium
APIC timer in one-shot mode is used for scheduling.

2.1 Turtle Scheduler

The Turtle scheduler incorporates a novel real-time
scheduler based on the Rate controlled scheduling
model by Yau and Lam [4], and the RT-Mach
reservation model [2]. The scheduler is designed to
allow concurrent execution of real-time tasks,. and
Linux processes which are run as best-effort. The Linux
kernel is guaranteed a minimum QoS to ensure the
workstation allows interactive usage.

" Turtle provides a matching kemel level API for
MPI/RT time-driven channels. All hard real-time tasks
request QoS in terms of start and end time, period,
computation time, and the deadline with respect to start
of the period. The QoS is a contract between the task
and the scheduler. Hence, once a task is given its
requested computation time, its critical deadline is

-




updated to the next period. The scheduler prioritizes

tasks based on critical deadlines, thus ensuring that a
misbehaving task does not affect QoS guarantees for
other tasks. Such temporal isolation is critical for real-
time scheduling on COTS systems that ‘show non-
deterministic behavior.

In addition to its requested QoS, the Linux kernel is
treated as a special greedy task, that is given extra
computation time as long as there are no other
READY tasks. Efforts are underway to support more
than one greedy real-time tasks that may request extra
computation time as a multiple of some optlonal time
quantum durmg slack time.

2.2 Myrinet Real-Time Messagmg Layer

The LANai network co-processor is configured
with a specialized Myrinet Control Program (MCP)
adapted for QoS-sensitive behavior. PCI bus
‘contention from non-real-time traffic is eliminated by
performing “blocking” PCI DMA, i.e. disallowing
potential PCI'bus contenders from being scheduled on
the CPU during the transfer. '

The Turtle cluster maintains a globally
synchronized master-slave clock over Myrinet that
enables high performance parallel applications to take
advantage of synchronized persistent communications.
It also enables the scheduling algorithm to pre-plan
data transfers to avoid contention at the switches, thus
ensuring consistent high bandwidth.

The Myrinet messaging layer provides an interface
consistent with the MPI/RT standard.

3. Results

The Turtle scheduler improves interrupt latency, by
emulating the 8254 timer for Linux. The scheduling
overhead is maintained between 4 and 16 ps, with an
average of 6.5ps. The system was tested for up to 12
real-time tasks without failure. It can support a ‘task
period as low as 70ps. ,

Guaranteed message passing latency is achieved by
the- ,“blocking™ PCI DMA transfer. Eg. A 2KB data

transfer from the host memory to network buffers is
bound by 20ps: No such hard upper-bound can be
established for a traditional non-blocking DMA.

Maximum error in the slave clocks is bound within
#4ps. With this set-up we measured message passing
latency for 12 bytes messages to be guaranteed
between 6 and 13 ps as shown in Figure 1.
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Figure 1: Message Latency.
4. Conclusions

The Turtle system is well suited as the base for a
high performance implementation of the MPURT: 1.0
library. MPURT channels can be directly abstracted as
real-time tasks with an equivalent QoS. The system

takes advantage of the time-driven paradigm to

eliminate the need for explicit synchronization
primitives and the associated overheads. Policing of
PCI DMA transfers avoids contention with non-real-
time traffic. Turtle maintains a fine-grained global
clock using real time tasks. Resource contentions in the
messaging system are avoided by synchromzmg over
the global clock.

The project also demonstrates the feasibility of usmg
commercial desktop systems for hard real-time
computation. The experience gained will help identify
bottlenecks in current commodity hardware that are
non-conducive to real-time applications.
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A Fine-Grain Clock Synchronization Mechanism for

QoS Based Communication on Myrinet

Srigurunath Chakravarthi, Anand Pillai, Jothi Padmanabhan,
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High Performance Computing Laboratory,
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Abstract

Clock synchronization is a fundamental requirement for any real-time distributed system operating with
global schedules. This paper describes the design and implementation of a high accuracy (+4 us) global

clock on a Myrinet [4] gigabit/s system area network of PCs with considerably low software overheads.

The global clock is based on a master-slave internal clock synchronization scheme [15]. A novel approach
has been adopted to improve synchronization accuracy. The programmability of the Myrinet interface card
and the presence of an on-board Real Time Clock [4] have been utilized to counter the undesirable effects
of unpredictability in the latency of clock messages. The resulting synchronization facilitates global
scheduling of distributed real-time tasks, and provides a framework to build support for Quality of Service
in distributed high-performance environments.

1  Introduction 2
Coscheduling and minimization of network contention are key to high performance cluster computing. ‘

Coscheduling is possible if a global clock is maintained across all nodes in a cluster. Maintaining such a

global clock is a nontrivial task, since variation in temperature and pressure changes the natural frequency

! This work was funded in part by DARPA, US Navy TASP, and by the National Science Foundation.
? Corresponding Author. Phone: 662 325 8435. Fax: 662 325 8997, Email : tony@hpcl.cs.msstate.edu




of crystal-based oscillators. The difference in clock frequencies of individual nodes is termed drift. The
resulting difference in the absolute clock values is called skew. A clock synchronization mechanism must
correctly estimate the drift and skew of the local clocks to maintain a virtual global clock. This paper
describes the design and implementation of a high-accuracy internal clock synchronization mechanism on
the high-speed Myrinet [4] network. Internal clock synchronization [11] is synchronization of clocks with
respect to one another but not with respect to the outside world. It is achieved by using a master-slave

mechanism.

Host

Interface e /

Host _ Low latency worm-hole switch

, ~1.28 Gigabit/s duplex links
— Switch Switch /
witc witc %
—_ I I
| Programmable LANai interface consists of:
-~ - LANai processor
- SRAM
Interface Interface - DMA engines
Host Host - Real Time Clock

Figure 1: Myrinet network showing NIC and components
Myrinet is a gigabit/sec system area networking technology that is widely used in distributed high-
performance computing. Figure 1 shows the key components of a Myrinet network: 1. A programmable
Network Interface Controller (NIC) with the LANai processor, SRAM, and a Real Time Clock (RTC), and
2. Source routed cut-through Myrinet switches. So far, Myrinet has been primarily used for high-
performance communication. Popular messaging layers such as GM [12], FM [13] and BIP [14] are
designed for low-latency and high-bandwidth, with no particular support for Quality of Service or real-time
communication. FM QoS [6] is the only known messaging layer providing predictably low latencies

between network interfaces across a Myrinet network of which we are aware.




Myrinet worm-hole switches have predictably low fall-through latencies of the order of 500 ns [4].
However, the presence of contending traffic at a switch can cause unacceptably high jitters in latency [6).
‘Thus the key to enabling predictable communication across a worm-hole routed network such as Myrinet
lies in generating conflict-free schedules. This directly necessitates building a global view of time across
the network. This global view of time has to be sufficiently fine-grained and accurate to facilitate useful
utilization of Myrinet’s high bandwidth and low latency. Further, the mechanism that implements the

global view of time should have acceptably low overheads to achieve acceptable performance.

This paper describes a global clock implementation in software that meets the above requirements. The
implemented global clock is already being used as a vital component of BDM-RT [5] — a low-level real-
time Myrinet messaging layer. The key contribution is that this high-accuracy clock can pave the way for

QoS based communication with predictable messaging latencies over Myrinet.

The rest of the paper is organized as follows: Section 2 presents the problem of clock synchronization and
viable solutions in high-performance distributed environments. Section 3 describes our approach and
design. Section 4 presents results and analysis of these results on a 8-node, 1-switch Myrinet network .

Section 5 concludes the paper and presents planned improvements and future work.

2 Synchrenization in high-performance environments

Algorithms that solve the Byzantine general’s problem [11] require communication that grows as 0(n?)
with respect to the number of clocks involved in the synchronization. Hence, these algorithms do not scale
well with the network size and can in general be categorized as having unacceptably high communication
overhead for use in high-performance environments. Hardware based clock synchronization using GPS

systems [16] is a viable alternative, but is usually too expensive specially for large networks.

In a Myrinet based the network of PCs, the problem translates to synchronizing either the host clocks or the
on-board LANai Real Time Clocks (RTC). Synchronization of LANai RTCs helps in generating conflict-

free schedules for the link traffic. By conflict free, we mean that no packet will be scheduled to arrive at a




Myrinet switch (see Figure 1) with the same outgoing port as another packet that is currently falling
through the switch, thus eliminating any waiting time at the switch. FM QoS achieves synchronization at
the Myrinet interface by building a global view of time using network feedback. While this mechanism
enables conflict-free scheduling of messages at the network interface, synchronization is still absent at the
host level. That is, the resulting synchronization can not by itself be used to implement giobal CPU

schedules for host-to-host synchronization nor to guarantee end-to-end QoS.

An alternate synchronization scheme is to synchronize the host clocks (on which CPU schedules are based)
instead of the on-board clocks at the network interface. This latter mechanism mainly facilitates the
implementation of global CPU schedules for distributed tasks, and can also ensure conflict-free link
schedules if protocol processing delays are predictable. In other words, if the time spent by a message at the
sender’s node before being sent on the network is predictable, the host clock can itself be used to schedule

link traffic.

We chose to implement host-level synchronization mainly because of the following advantages: 1. It
facilitates global scheduling of real-time channel tasks [10] . 2. On our platform, host clocks are more fine-
grained (32-bit 5 ns counters) than the on-board RTCs (32-bit 500 ns counters). 3. We have developed a
real-time messaging layer BDM-RT [5] that meets the above-mentioned protocol processing requirements

to ensure conflict free link schedules.

3 Our Design

Our algorithm is based on a master-slave synchronization scheme. One node in the network is designated as
the master node and the rest as slave nodes. The master periodically broadcasts its clock value to each of
the slaves. Each slave constructs a virtual clock based on the received master clock values. This scheme
scales well because the number of clock message transfers grows as 6 (n) with the number of nodes in the
network. Additionally, the relatively low bandwidth and processing time required for this algorithm is

suitable for high-performance environments.




3.1  Integrity of clock messages

It is well known that the accuracy of slave clocks is limited by the variation in the time taken to transfer
clock messages [7]. More specifically, if the latencies of individual clock messages are bounded by Ty,
and Ty, there is potentially an error of (Type-Tomis) units in the master’s clock value accessed by a slave.

That is, the master’s clock reading, Ty, at the instant usable by the slave can be represented as:

Trnaster = Tn+ Toin + A 1

Where

T 1s the master clock’s time-stamp carried by the clock message,

Thin 1s the theoretical minimum latency incurred by the clock message,
0 <A< (Thax — Tiin), and

T, is the theoretical maximum latency incurred by the clock message

The inaccuracy of the slave clock’s reading of the master clock is therefore at least A units of time. Studies
conducted by us on the predictability of host-to-host latency on a Myrinet network [1] revealed that latency
variation (jitter) is rather high compared to the absolute latency of messages on high-performance
messaging layers. This is largely attributed to the unpredictable data transfer time between the host and
LANai memory across a shared bus. For example, using periodic messages of length 32 bytes with BDM,
our non real-time messaging library on Linux [9], jitters as high as 300 psec (with no guaranteed bound)

were observed [5][9]. This is rather high compared to the average latency of 30 psec.

The key to improving global clock accuracy in a master-slave scheme thus lies in improving the accuracy
of remote clock (master clock) accesses. One way of doing this is to improve the predictability of clock
message latencies, thereby reducing A. This method is rather difficult to implement on commodity
platforms given the various extraneous factors (such as contention of shared resources, scheduling delays,

variation in traffic load, etc.) influencing the predictability of end-to-end latency. An alternate solution is

to bound, if possible, the value of A with relatively higher accuracy than the variation of A itself. The next
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sub-section describes how A can be estimated with reasonably high accuracy on any Myrinet messaging

sub-system, and discusses our implementation.

3.2  Estimation of message latency

The actual delay incurred by a clock méssage is measured by the messaging subsystem and is made
available to the slave at the time of receipt of the clock message. By recording delays at the various stages

of protocol processing, the master clock is made to “keep ticking” while in transit to the slaves. Figure 2 is

Protocol headers Master’s host clock reading Delays

Figure 2 Clock message packet

a schematic representation of the clock message sent by the master at every re-synchronization cycle.
Barring the protocol headers, clock messages mainly contains two fields of information: The master’s clock

value (T}, ), and the protocol processing delays encountered by the clock message (Dp).

To understand how the delays are recorded, the typical stages involved in the transfer of messages on a
Myrinet network are summarized here. On the sender’s side, these constitute: 1. Protocol processing at the
host, 2. Data transfer between host and LANai on-board buffers, 3. Protocol processing by the Myrinet
Control Program (MCP) at the network interface, and 4. Network DMA of message to remote network
interface. On the receiver’s side, the stages are as follows : 1. Network DMA to receive a message, 2.
Protocol processing and buffering of received message, 3. Transfer of message to host memory, and 4.

Protocol processing by the host library.

e

- Host software - APIC timer and
< (Clock module) ) » Time Stamp
- S Counter (TSC)
e <7 Across the
~RCI b
< Host
S A .
LANai

( MCP }———p{ RIC

—

Figure 3: Clocks Accessed
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We now describe how to compute L, — the network latency. In the absence of any extraneous traffic during
the broadcast of clock messages, L, equals the total switch fall-through time. Assuming S as the number of
switches traversed by a clock message, and a constant fall-through time, Ly, of 0.5 usec [4], the above

equation can be rewritten as follows:

Tmnsler = Tm + Dm + (Tan'Tsnl) + (S*stitch) (3)

Our current implementation ensures that conflicting Myrinet traffic is not scheduled durin g clock re-
synchronization periods. Hence we use equation 3 to calculate Thnaster. Because of this simplification, an
additional inaccuracy is introduced in the measurement of T,,,. Ty, should ideally be the RTC timestamp
when a clock message shows up at the slave’s LANai interface. However, the slave MCP typically runs in
an infinite loop and checks for messages ready to be received only periodically in its activity loop. Because
of this polling delay, a certain amount of time may have elapsed before the MCP detects that a message is

ready to be received. This elapsed time cannot be accounted for using Equation 3.

Equation 2 can be used to eliminate this inaccuracy, and to operate without any restrictions on conflicting
Myrinet traffic. L, can be calculated by the master node’s MCP by measuring the actual amount of time it
takes to DMA a clock message. This will include delays at switches, and any polling delays at the slave
node. Implementation of this will require an extra message to transfer the value of L, from the master to the

slave. This is envisioned as future work.

3.3 Slave virtual clock algorithm

Upon calculation of the master’s clock value, the slave updates its virtual clock based on the current virtual
clock value and the computed master’s clock value. The algorithm used to compute the slave’s virtual clock
to be used until the next re-synchronization cycle is briefly described in this section. One of the primary
goals that governed the choice of our algorithm was minimizing the computation overhead. The algorithm

is also tolerant to faults arising from missed clock messages.
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The availability of the on-board Real Time Clock (RTC) at the Myrinet interface is crucial to the ability to
record processing delays. Additionally, the RTC can be memory-mapped to host memory, making it
accessible directly from the host. Figure 3 illustrates this. Let us denote the master’s host-clock with C,, ,
the master’s RTC at the network interface with C,,, the slave’s host-clock with Cg,, and the slave’s RTC
with C,,. At every re-synchronization cycle, the master clock task reads off C,;, and C,,, consecutively with

no intervening delays. Let this time be Ty, by Cop and Tpyy by Cppp.

The clock message is constructed by the host library with the field Ty, equal to T, and Dy, equal to Ty
After all protocol processing at the master has been done, the sender’s Myrinet Control Protocol (MCP) is
ready to DMA the message on the network. At this moment, let the C,,, reading be Tyn,2. The field Dy, is

overwritten with (Tpns =Tmn1), i-€. the sum of all delays incurred at the master node.

At the slave node, the MCP reads off C,, at the beginning of receipt of every message. Let this value be Ty,
for the clock message. The clock message is fully received and stored on LANai SRAM until the slave
clock task is ready to pull it off the buffer. After the slave task has copied the clock message to host
memory, it reads off Cy, and Cg, in succession with no intervening instructions. Let these timestamps be
Tgave and Tgn. The master’s clock value at this instant (i.e., when C, reads Ty,..) can be calculated as

follows:

Tmaster = Tm + Dm + (Tsn2 - Tsnl) + Ln (2)

Where L, is the network latency incurred by the clock message. The value of Ty, computed as above is
typically inaccurate because of inaccuracies in the measurement of T, (on which D, depends) and T,,.
As described above, both Ty, and Ty, involve reading the value on the on-board RTC from the host
processor. This operation occurs across the PCI bus and inherently induces an inaccuracy (empirically

measured to be approximately 2 [ts on our architecture testbed).
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For simplicity let us assume that each slave constructs a virtual clock by assuming a constant drift rate
between the master and its clock between consecutive re-synchronization cycles. At any instant in the n™
re-synchronization interval (i.e., between the n® and the (n+1)™ clock message broadcasts), the virtual clock

at a slave can be extrapolated as:

Tv = C + 8n*(Tsh'Tsh“) —e* (Tsh - Tsh“)/Ps (4)

Where

T, is the value of the synchronized virtual clock at a slave,

C is a constant that corrects the boot-up time offset between the master and slave clock,

8, is the computed relative drift between hardware clocks of a slave and the master for that period,
Ty is the reading of the slave’s hardware host clock,

P, is the synchronization period in slave time units,

Ts" is the reading of the slave’s hardware host clock at the time of the n*" re-synchronization, and

¢ is the error in the synchronized virtual time at the time of the n™ re-synchronization.

The second expression on the right side of the above equation corrects for the difference in clock
frequencies of the master and slave clocks. The third expression amortizes the error at the previous
synchronization over the subsequent synchronization period and ensures convergence of the synchronized

virtual clock to the master clock.

C and §, are computed based on the master clock values received and the local slave clock reading at the
time of receipt by the slave task. Let Tpaqe,” represent the value of the master clock computed using
equation 2 (or equation 3, as the implementation may be) for the n™ re-synchronization master clock

message. Let the value of the slave hardware clock at the instant of receipt of the n™ master clock message

n
be Tslave .
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Then, C is found by computing the difference between the master and slave clock readings for the first

synchronization cycle, and remains constant thereafter. That is,

C= (Tmz\sterl - Tslavel) (5)

3, is recalculated at every re-synchronization cycle based on the relative drifts of the master clock and the
local slave clock.
8n = (Tmastern - Tmastern-l)/ (Tslaven - Tslnven.l) for n>1

61 - 1 (6)

£=T," - Tpaster » Where T is synchronized virtual time at the time of the n" re-syncronization and

extrapolated based on the clocks’ state at the (n-1)" to n" re-synchronization intervals.

In order to induce fault tolerance to missed clock messages at the slave and to decrease the undesirable
effect of sporadic transmission errors on the virtual clock, the actual algorithm used to compute 8, is

slightly different as compared to the one described by equation 4.

Instead of assuming a constant drift rate between two consecutive re-synchronization intervals the drift rate
is assumed constant and averaged over a longer sliding window of time. The number of synchronization
periods the window spans is called the “window size.” At each re-synchronization the window size
increases by one. When the size of the window reaches a maximum, W__, the windows slides forward such
that the size of the window is now W_ . To maintain some history of drift the window is not allowed to
slide forward completely and reach zero size. Relative drift, 8,, is computed within this window as,

6 =T .-T

M (T e = T Q)

master. slave

where,

T, ... is the master clock time at the beginning of the current window, and
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T',... is the slave host time at the beginning of the current window.

The averaging smoothes out isolated erroneous clock messages and longer window sizes increase this
smoothing effect. Clock behavior and hence the frequency changes over time depending on room
temperature and other factors. If, instead of a sliding window, a stationary enlarging window is used or if a
long window size is chosen, then the effect of isolated erroneous clock messages will affect the
synchronized virtual clock longer, but to a monotonically diminishing extent. Further, recent chan ges in
relative drift between master and slave will take longer to correct the synchronized virtual clock. Hence the

parameters of the sliding window should be chosen carefully.

In our implementation the window does not slide continuously as to achieve that, the clock status at every

re-synchronization needs to be stored in memory, which is an overhead.

4  Experiments, Results and analysis

4.1  Hardware and Software Configuration

All experiments have been performed on an eight node cluster connected by Myrinet. Each node consists
of a Pentium Pro 200 MHz processor with Intel FX440 motherboard. A single 32 bit PCI bus (33 Mhz) is
shared by Ethernet, Myrinet and SCSI interfaces. The Myrinet PCI interface consists of the LANai 4.x
processor with 1MB of SRAM. The operating system used is Linux 2.0.30. The Myrinet network is driven
by the BDM-RT messaging library. This configuration represents a typical high performance cluster
composed of commercial-off-the-shelf (COTS) desktops. The newest Intel processors and Myrinet can

utilize all the results shown here.

4.2 Synchronization Accuracy

The accuracy of clock synchronization can be computed by recording the deviation between virtual global
clocks maintained by the slaves and the master clock at regular intervals. In our experimental setup, we

measure the deviation between the master clock and the global clock at every resynchronization period.
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This approach ensures capturing the worst case skew, since the global clock in each slave is expected to

have maximum deviation from the master clock just before re-synchronization.

Syncaranization Acturasy

Feoonnmgagsion Poradd = [oen

R,

Dev avior fo master ¢

% Aihed G

Resynchronization Interval

Figure 4: Deviation from Master Clock (Nanoseconds) for all slaves

The global clock module runs in each of the slaves at every resynchronization interval. It is instrumented to
record the deviation between the global clock time and the master clock time computed using Equation 3
on the received master clock message, before executing the virtual clock algorithm (Equation 4). Apart
from the deviation and the resynch interval count, other metrics such as the drift between the master and
slave hardware clocks, and the time the clock message waited in the slave's LANai before being consumed

by the host are also stored.

At this point, it is important to note that the deviation as measured above gives only an approximate value

of the accuracy of the global clock. Ideally, accuracy should be computed using the deviation between
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exact values of the global clock and the master clock. In our setup, we use an estimated value of the master
clock , because of the unavailability of an external mechanism to access its exact value at the slave nodes.

Hence, the measured accuracy is associated with an error equal to the error in the estimation of the master

clock value at the slave.

Figure 4 shows a sample of the deviation for each of the 7 slave nodes over 2500 re-synchronization
periods with a resynchronization interval of 1 second . All the global clocks are within + 5psec of the
master clock at any instant of time. The table below shows the drifts between uncorrected hardware clocks
of each slave with respect to the master. It is seen that our algorithm copes well with a range of drifts to

ensure synchronization within + 5 pisec of the master.

Slave Uncorrected Drift (ppm)
Slave 1 120
Slave 2 36
Slave 3 103
Slave 4 91
Slave 5 18
Slave 6 58
Slave 7 52

Table 1: Measured drift between hardware clocks of slaves and the master

4.3  Optimizing the resynchronization interval

One of the primary goals of our clock synchronization algorithms is to get maximum accuracy while
incurring as low an overhead as possible. Increasing the resynchronization interval reduces the overhead on
network and CPU resources. However, it is expected that increasing the resynchronization interval would

result in a decrease in the accuracy of the global clock due to error accumulated from uncorrected drift.
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The network overhead associated with the clock synchronization algorithm is measured as the ratio of the
time spent on sending clock messages to the clock resynch period. The time spent by the master for
brdadcasting its timestamp was calculated by measuring the RTC timestamps just before and after the
broadcast and taking their difference. Our experiments show that this time is about 32.5 uS. The estimated

maximum CPU time required is 80ys.

The following table shows the worst case deviation of the clocks and the corresponding network and CPU

overheads for resynchronization periods of 100ms, 1s, 10sec, and 30sec.

Period Minimum Maximum Network Overhead | CPU Overhead
Deviation (ns) Deviation (ns) % %

100ms -4831 4783 3.25x10° 8x107

Isec 4174 4969 3.25x10° 8x10™

10sec -4583 5069 3.25x10™ 8x10™

30sec -8602 8835 1.08x10™ 2.7x10”

Table 2: Clock error and overhead for various synchronization periods
It is observed that increasing the resychronization period has no noticeable effect on the accuracy for the
periods studied. Our reasoning for this behavior is that for the range of periods studied, the error
accumulation due to uncorrected drift during the period is insignificantly small compared the error in
estimation of the master clock value. In other words, the inaccuracy is primarily because of measurement

errors in reading the exact master clock value and the estimates for the synchronization message.

4.4  Fault tolerance

As mentioned earlier, the current design and implementation is tolerant to faults arising from transmission
errors and occasionally missed clock messages, because of the averaging scheme used at the slaves. The
primary shortcoming of master-slave synchronization algorithms is the threat of failure of the master node.

Although, our current implementation does not cope with outage of the master node, the design makes it




feasible to add this fault-tolerance. Certain features of the current design make it fairly straightforward to
designate a slave node to take-over as the master when required. For example, it is transparent to the
scheduler and operating system whether the current node is a master or slave because both these modules
are scheduled as periodic tasks with identical task parameters. Also, the master and slave modules use
identical MCP code, thus making it simple for a node to switch between the roles of a master and slave.

The implementation of master fail-over is planned as future work.

S Conclusion and future work

The need for a high-accuracy global clock for real-time messaging and coscheduling on a distributed
system was seen as the motivation for the work presented in this paper. Our goal was to design and
implement a high-accuracy, low-overhead internal global clock on the high-speed Myrinet network. This
was achieved by using a master-slave algorithm with a novel technique of recording protocol-processing

delays encountered by clock messages. The resulting design can be implemented on any Myrinet-based

messaging layer.

We achieved £ Susec accuracy in an 8-node Myrinet cluster, incurring CPU and bandwidth overheads in
the range of 0.03% to 0.07%. The algorithm is tolerant to transmission faults and missed clock messages.
Further design improvements are planned to introduce master node fail-over and to reduce the incurred
overhead. It is also planned to verify the exact accuracy of our global clock by using an external GPS based
clock, and to further improve the accuracy by implementing the more exact scheme (Equation 2).

It is envisioned that this low-overhead clock synchronization will pave the way for QoS based high-

performance Myrinet messaging layers, and will facilitate fine-grain global synchornization of distributed

tasks.
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Abstract

This paper describes the design and implementation of a real-time cluster of PCs that
provides globally synchronized scheduling and predictable messaging passing. A high-accuracy,
fine-grain global clock implementation has been closely coupled with a time-based scheduler to
facilitate finely synchronized global scheduling across the cluster. A real-time messaging layer
provides predictable communication latencies over the interconnecting Myrinet network. This
system provides a solid framework for QoS based real-time communication, and in particular
facilitates efficient layering of high-performance real-time distributed middleware such as
MPI/RT. We present experiments and results to demonstrate the degree of predictability and
synchronization achieved on an 8-node Myrinet cluster.

1 Introduction

It is well known that clusters of commodity workstations are becoming a popular low
cost alternative to super-computers for high-performance distributed computing [3]. Such systems
also offer a higher degree of reliability through replication, better scalability, and portability. As
distributed algorithms expand their scope to online computational simulation of complex
phenomenon, data acquisition and analysis, telecommunications, multimedia and avionics, a new
requirement is seen to emerge: The correctness of such applications depends not only on the
result, but also their timeliness. To ensure correct operation, such real-time applications impose
certain end-to-end Quality of Service (QoS) requirements on message delivery. These
requirements can only be satisfied by appropriate design of the underlying architecture, operating
system and middleware.

High performance distributed systems are not necessarily deterministic in their behavior.
Most performance enhancements are aimed at improving the average case, resulting in a large
gap between average and the worst case. A system required to provide precise end-to-end QoS
guarantees is hence unable to take advantage of such enhancements. Determinism for guaranteed
QoS and high performance are thus often complementary requirements. The system must be able
to provide the application with an appropriate balance of determinism and average performance
as dictated by its QoS requirements.

To provide temporal guarantees, individual tasks of a distributed real-time application
must share a common notion of time. The worst-case guarantee for any time-based QoS is
directly affected by the accuracy of the global clock. In case of non-real time parallel algorithms,
the performance is severely affected by the scheduling strategy used at each node if the
applications involve significant communication. Local scheduling that is not based on a global

* This work was funded in part by DARPA, US Navy TASP, and the National Science Foundation
* Corresponding Author. Phone: 662 325 8435. Fax: 662 325 8997.
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scheme results in low CPU utilization and excessive communication and context switching
overheads. Gang scheduling and co-scheduling alleviate this problem by providing simultaneous
access to all cluster resources for each job [10]. A fine-synchronized global clock enables the
system to implement global schedules with no extra overhead for context switching entire
applications concurrently improving their scalability and responsiveness [11].

This paper addresses all of the above requirements, and presents an architecture and
implementation of a Myrinet-connected [8] cluster of workstations designed to support high
performance distributed real-time applications. The cluster is based on a commodity operating
system (Linux) with real time enhancements (Turtle) [1]. The system features a novel Myrinet
driver that is adapted to provide predictable end-to-end communication and a high-accuracy, low-
overhead global clock.

The rest of this section describes past work in related areas and presents our approach to
solving the problems of synchronization, real-time scheduling and communication on Myrinet.
Section 2 briefly describes the clock synchronization technique used to achieve high-accuracy.
Section 3 discusses the integration of the global clock with the individual CPU schedulers.
Section 4 describes the design and implementation of a real-time messaging layer, BDM-RT.
Section 5 presents experiments and results that demonstrate a high degree of predictability in
message passing and tight synchronization among cluster nodes. Section 6 offers conclusion and
presents a synopsis of our future goals.

1.1  Related work in cluster computing

Myrinet [8] has traditionally been used for high-performance computing, with little or no
emphasis to providing QoS and/or real-time guarantees. The primary challenge associated with
using Myrinet for real-time communication is to ensure bounded fall-through times across the
worm-hole switches. Myrinet worm-hole switches have predictably low latencies, that are less
than a micro-second only in the absence of switch contention. FM-QoS [17] is a messaging layer
that overcomes switch contention by building a global view of time among LANai interfaces [8]
in the Myrinet network. FM-QoS uses feedback from the actual latency incurred by specially
introduced traffic, to correct for drifts among Real Time Clocks (RTCs) on the individual LANai
interfaces. The resulting synchronization enables conflict-free scheduling of link traffic with
predictably low latencies between LANai interfaces.

However, resolving switch contention alone is insufficient for ensuring end-to-end
latency predictability of Myrinet messages. Contention of shared resources within the sending
and receiving nodes is essential. These shared resources comprise the host CPU, the LANai
processor, the inter-connecting bus (i.e. PCI bus), limited network buffer space, and the on-board
DMA engines {8].

A model for end-to-end periodic real-time communication on Myrinet has been reported
by Zhang et al. [19]. A two-level scheduling scheme creates a virtual, slower network for each
real-time application across the network. This model is particularly suited for open systems
because it does not require intimate knowledge of the timing characteristics of the system, or
analysis of global schedulability. The primary advantages of this model are its high resource
utilization and simple admission criterion. Implementation of this model was reported as on-
going work, citing the implementation challenges involved [19].

1.2 Our approach

Our approach into providing a distributed real-time cluster is largely dictated by the
requirements of MPI/RT [6] real-time channels. In particular, our system permits efficient
layering of MPI/RT time-based channels with full QoS capability. A channel in MPI/RT is a
persistent logical path for unidirectional message transfer between two endpoints (processes).
MPI/RT enforces early-binding semantics, wherein an application specifies desired QoS and
system resource requirements before entering the real-time mode. MPI/RT can provide three
types of “sidedness”, that refers to the handshaking exchange between communicating tasks.
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Standard asynchronous communication requires two-sided handshaking. A push or pull model
illustrates one-sided communication. With pre-established early-binding of channels, it is possible
for an application to pre-specify a time or event for sending data on a channel. In this case, it is
possible for the middleware to implement data transfers without any handshaking nor explicit
user level call. Such a message transfer is termed as zero-sided. We implement such channels as
real-time send and receive tasks with time-based QoS meeting the channel’s requirements.

The scope of our system however extends beyond MPI/RT and is geared to facilitate
high-performance real-time distributed computing by providing: (a) Fine-grain global co-
scheduling of distributed tasks to reduce synchronization overheads, (b) end-to-end predictable
real-time communication, and (c) guaranteed CPU and network bandwidth.

The design and components of our system are described in detail in the following
sections. We implement a high-accuracy fine-grain global clock based on a master-slave scheme
to synchronize host clocks. The global clock is integrated with the individual CPU schedulers on
each node. On each node, the Turtle scheduler [1] provides bounded-jitter time-based scheduling
of computing tasks and communicating “channel” tasks. Communicating tasks shepherd their
real-time messages between the host and network interface in their allotted CPU time, eliminating
priority inversion. A real-time messaging layer, BDM-RT, guarantees bounded-time protocol
processing. Conflict-free global schedules can ensure deterministic end-to-end latencies across
the Myrinet network, irrespective of interference from non-real-time Ethernet traffic.

The global clock and scheduler in Turtle are implemented as incremental Linux kernel
modules. At initialization, the global clock module is installed and establishes a synchronized
time frame. Once the notion of a global time has been established, the Turtle scheduler is
installed. The time-based Turtle scheduler uses global time for all dispatch decisions. The
following sections describe the implementation of each of these modules.

2  Global Clock on Myrinet

This section summarizes the goals, design and results achieved for the fine-grain global

clock implemented using Myrinet. The global clock design and implementation has been
described in detail in another paper [2].

2.1  Clock synchronization in high performance real-time clusters

Scalability and low resource overhead are the main challenges for software-based clock
synchronization schemes on high performance clusters. High accuracy and predictable resource
consumption patterns by the synchronization algorithm are also highly desirable. While high-
accuracy permits efficient co-scheduling, predictability of the synchronization algorithm

_ minimizes contention for network resources between real-time applications and the clock module.

Algorithms that solve the Byzantine general’s problem [12] require communication that
grows as 6(n®) with respect to the number of clocks involved in the synchronization. Hence, these
algorithms do not scale well with network size due to unacceptably high communication
overhead, particularly for large clusters. Hardware based clock synchronization using GPS

systems [13] is a viable alternative, but is usually more expensive than a software solution that
uses available network.

22  Clock synchronization module

We use a master-slave mechanism to achieve internal clock synchronization [14]. This
mechanism scales well with network size, requiring 6(n) message transmissions at every re-
synchronization step. The master node periodically broadcasts a 64-bit nanosecond-precision host
clock value, using which each slave node builds a synchronized virtual clock. The design uses a
novel technique to greatly improve the achievable accuracy, compared to traditional master-slave
schemes [2]. Clock values sent by the master are kept “ticking” by adding the protocol-processing
delays encountered by clock messages. The transmission latency between the master and slave

24




LANai interfaces is estimated using network feedback at the master node. The above-mentioned
techniques greatly improve the accuracy of the master message as read by the slave, enabling
improved clock accuracy. The clock module is scheduled as a periodic real-time task at both the
master and slave nodes. Clock messages are transmitted using BDM-RT and consequently incur
deterministic latencies and exhibit predictable utilization of the PCI bus, LANai processing time
and network bandwidth.

We achieve an accuracy of +5usec on an 8-node Myrinet cluster, incurring CPU and
network bandwidth overhead as low as 0.05%. The algorithm is tolerant to faulty transmission of
clock values and occasionally missed clock messages. The next section describes how the global
clock is coupled with the scheduler.

3 Integrating global clock with the OS for RT-Tasks

3.1 Turtle Scheduler

Each node in the cluster runs our time-based scheduling variant of RT-Linux v.0.5 [4]
called Turtle[1]. Turtle uses RT-Linux’s capability to intercept all hardware interrupts, and
deliver them to the Linux kernel only when it is on CPU. The Turtle scheduler incorporates a
novel strategy based on the Rate controlled scheduling model by Yau and Lam [7]. The
scheduling strategy provides the same type of temporal isolation for all real-time tasks as the RT-
Mach resource reservation model [S]. The scheduler is designed to allow concurrent execution of
real-time tasks, and non-real-time Linux processes. The Linux kernel itself is guaranteed a
minimum QoS to ensure that the workstations allow interactive usage.

All real-time tasks in Turtle are periodic and request QoS in the form of a tuple of start
time S, end time E, period P, deadline D, and worst case computation time C. The QoS
requirement is a contract between a task and the scheduler. A critical deadline is one by which the
scheduler must allocate the task another C units of time. Hence, once a task is given its requested
computation time, its critical deadline is updated to the next period. The scheduler prioritizes
tasks based on critical deadlines, thus ensuring that a -misbehaving task does not affect QoS
guarantees for other tasks. Such temporal isolation is critical for real-time scheduling on COTS
systems that show non-deterministic behavior. Further, if a task’s expected time to finish is within
a certain bound of its deadline, it is treated as a non-preemptible task.

Turtle uses the APIC timer on Pentium Pro (and higher) processors for scheduling tasks
with nanosecond accuracy. Setting the APIC timer alarm has a low overhead ( ~500ns). Hence,
Turtle uses the timer in a one shot mode, instead of periodic time slices enabling task dispatch
with arbitrary granularity. At every scheduling instance, the next alarm is set to the minimum of
the wakeup time for the next sleeping task Twaxeup, and the end of computation time of the current
task Thinish- .

The Linux kernel executes queued bottom half of device drivers at every timer interrupt
(typically every 10ms). If Turtle tries to preempt the kernel before the bottom halfs have been
handled, it suffers a very large interrupt latency. Further, if a DMA is initiated by a bottom half
handler, it competes with the CPU for access to the memory bus. In order to avoid these
problems, Turtle runs the Linux kernel as a real-time task with a guaranteed QoS of 1ms every
10ms and emulates the timer interrupt for the Linux kernel only when the duration up to the next
alarm is sufficiently large. Although created as a hard real-time task, the Linux kernel is treated as
a special greedy task that is given extra computation time to pick up any extra cycles as long as
there are no other ready real-time tasks.

3.2 Integrating Turtle with the global clock

The Global clock initialization routine also uses the APIC timer to periodically fire a
handler that receives clock synchronization messages from the master. The Turtle module is
installed after the global clock has been initialized and all nodes synchronized. During
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initialization, Turtle obtains the period, computation time and expected arrival time of the next
synchronization message from the global clock handler. This information is used to create a real-
time task that periodically sends (in case of master) or receives (in case of slaves)
synchronization messages . Turtle then creates a real-time task for the Linux kernel itself. The
scheduler then registers itself as the APIC timer handler and the system is ready to instantiate
other real-time tasks.

4  Real-time messaging

4.1 Messaging architecture

In a distributed real-time system, the communication subsystem is a critical infrastructure
[14]. In our architecture, Myrinet is used by MPI/RT channel tasks for real-time messaging, while
Ethernet is used by non-real-time Linux processes. The Myrinet network chiefly consists of low-
latency worm-hole switches, high-speed Myrinet cables, and programmable Myrinet interface
cards. The Myrinet interface [8] consists of the LANai processor, on-board SRAM, two DMA
engines for network DMA, and one DMA engine for transferring data between host memory and
LANai memory.

BDM-RT is the low-level real-time messaging layer that facilitates efficient layering of
the MPI/RT channel abstraction. BDM-RT has been derived from a high-performance messaging
layer, BDM [15], and aims at providing deterministic time-based real-time communication with
performance as a secondary goal. BDM-RT consists of a host library and a Myrinet Control
Program (MCP) that runs on the LANai processor. A complete description of the design of
BDM-RT is available in the thesis by Chakravarthi [19]. Non-real-time Linux processes
communicate using the Linux TCP/IP stack over the conventional Ethernet network.

4.2  Predictability

Predictability is a primary requirement of real-time messaging layers [16][21][22].
Predictability implies determinism in message latency, protocol processing delays, and access to
shared resources involved in communication. Our system uses the layer-by-layer approach [21] to
achieve predictability. That is, predictability is built into each software layer, starting from the
lowest software layer BDM-RT and working upwards to MIP/RT and the application layer.

250

Sender and Recealver are pinged with 8 kB packets evory 1 second
T T T T T

200

150

s o] 2000 4000 6000 BOOO 100C
£ 250 T - r .
£
& BDM-RT Message Size = 4000 bytes q
2 ]
= 5g0 L Peoriod = 10 ms R
4
1850 F u
F”MW« i T e R S D T
100 L v —L v ]
o 2000 4000 6000 8000 100C

Message Number

Figure 1 Predictable message passing latency in BDM-RT
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4.2.1 Predictable PCI DMA latency

Transfer of data between host memory and LANai memory with predictable latencies is
essential to provide predictable end-to-end latency to the layer above BDM-RT. On a COTS
system, several devices share the interconnecting bus (e.g. PCI bus) and typically transfer bursty
non-real-time data. Bus contention from such devices (e.g., Ethernet interface) causes great
unpredictability in the latency of Myrinet PCI DMA transfers.

BDM-RT uses a technique that we have termed “blocking-DMA” to ensure predictable
PCI DMA of Myrinet data [1]. BDM-RT blocks the CPU while the Myrinet on-board PCI DMA
engines transfer data, thus ensuring that Linux drivers do not initiate a simultaneous PCI transfer.
Figure 1 shows the BDM-RT latencies with and without blocking-DMA in the presence of
interfering Ethernet traffic from a ping program that sends 8000 bytes of data every second to
both nodes.

4.2.2 Bounded-time protocol processing

BDM-RT provides bounded-time response both at the host library and at the MCP.
Sending processes should allocate a Host-LANai buffer-pair using a call to BDMRT_Alloc() that
always succeeds in bounded time. After copying the message to the allocated host buffer,
BDMRT_Send() transfers the message across the PCI bus in bounded time, which is a function of
the message length. At the receiver’s node, a call to BDMRT_Recv() succeeds and returns in
bounded time (a function of message size), provided the message has already been received and
stored at the LANai interface. With globally planned schedules and predictable end-to-end
latencies, it is safe to assume that messages arrive at the receiver’s LANai interface at or before
the expected time. It is the responsibility of the layer above BDM-RT to free receive buffers by
calling the function BDMRT_Free().

The MCP runs in an infinite loop, and is mainly responsible for initiating and completing
DMA transfers to and from the host and the network. For initiating PCI DMA transfers, the MCP
responds to flags that are set by the host-library when the user is ready to send or receive data.
Network DMA transfers are initiated by the MCP after examining a LANai register and detecting
a message (in case of received messages) or upon completion of Host-to-LANai PCI DMA (in
case of outward bound messages). All actions of the MCP are non-blocking in nature to ensure
bounded duration of the MCP infinite-loop.

4.3  Resource management

The resources that primarily require management to facilitate conflict-free network
accesses are the LANai processor, LANai buffer space, PCI DMA bandwidth, and link
bandwidth. BDM-RT has been tightly coupled with the Turtle scheduler to manage shared
resources without introducing priority inversion. For instance, PCI bus bandwidth is managed by
absorbing PCI DMA latency into the computation time parameter (C) of the communicating
channel task. This is because BDM-RT functions that trigger PCI DMA transfers do not give up
the CPU until the transfer completes. Although this reduces performance, it ensures that no other
device driver competes for the PCI bus when an application wishes to transfer data. Link
bandwidth and limited receive-buffer space at the LANai are managed by generating conflict-free
global schedules based on the global clock. It is important to notice that the high-accuracy global
clock, the low-jitter Turtle scheduler, and bounded-time protocol processing by BDM-RT are all
required to ensure conflict-free link schedules without requiring a second-level of link scheduling
at the MCP. In other words, contention of link bandwidth and Myrinet worm-hole switches is
eliminated without explicit synchronization among the MCPs. In this sense, our approach is
orthogonal to that of FM-QoS [17] which aims to achieve LANai-level synchronization.
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4.4  Priority Inversion

Priority inversion is minimized by migrating most of the protocol processing activity into
the tasks’ context. Sending tasks marshal their messages to LANai memory, and receiving tasks
transfer messages from LANai memory to the host in their allotted CPU slot. This minimizes
priority inversion that can be caused at the receiver’s LANai interface when a high-priority
(early-deadline) message is blocked by another low-priority (late-deadline) message that is
currently using the PCI bus. The above-mentioned situation is eliminated by performing LANai-
to-host PCI transfers only during the receive task’s allotted CPU time.

4.5 QoS sensitivity

QoS-sensitive protocol processing is necessary to meet QoS requirements of real-time
tasks [18]. Generally, link traffic is prioritized based on a scheme such as Earliest Deadline First,
or Weighted Fair Queuing to ensure that processes with the most stringent QoS requirements are
serviced first. On our system, prioritizing is done by the Turtle scheduler based on message
deadlines of the communicating tasks (channel tasks). The channel task parameters such as start-
time (S), deadline (D), end-time (E) and period (P) are decided by the MPI/RT middle-ware,
based on the channel’s QoS attributes. The CPU time (C) is set to the worst-case estimate of PCI
DMA latency for the channel’s message size. The BDM-RT MCP simply dispatches messages
handed to it by the host library in FIFO fashion, because messages. are already in correct order. At
the receiver node, messages are de-multiplexed among the various channel tasks based on
message tags.

MPI/RT has to ensure that Myrinet switch contention is absent when global schedules are
generated at the “commit” phase [6]. For any given schedule, it is possible to estimate the arrival
time of messages at a Myrinet switch because messages incur bounded protocol processing delays
before arriving at a switch. Thus it is possible to identify and discard global schedules that can

potentially cause switch contention. The sample application in the next section establishes these
bounds on messaging latency.

5  Sample Application (Ring)

The following experiments have been performed on an eight node cluster connected by
Mpyrinet. Each node consists of a Pentium Pro 200 MHz processor with Intel FX440
motherboard. A single 32 bit PCI bus (33 MHz) is shared by Ethernet, Myrinet and SCSI
interfaces. The Myrinet PCI interface consists of the LANai 4.x processor with IMB of SRAM.
The base operating system used is Linux 2.0.30. Turtle is an enhancement variant of RT-Linux
0.5. The Myrinet network is driven by the BDM-RT messaging library. This configuration
represents a typical high performance cluster composed of commercial-off-the-shelf (COTS)
desktops. All the results presented here are expected to scale to all newer Pentium and Myrinet
architectures. _

. As previously mentioned zero-sidled MPV/RT channels can be implemented using RT
tasks that send and receive messages with QoS of the channel. The messaging latency for an
application that uses zero-sided communication is an interval from the time at which the sender
task is invoked on node i (Tens(i) ), up to the deadline of the receiver task on node @i+1) (
Drecy(1+1) ). Deadlines for all tasks are set as the sum of their worst case computation time and the
scheduling overhead. '

The sequence of actions during a message transfer is depicted in Figure 2. To establish

accurate bounds on the message passing latency, a sample application was developed that sends
messages through the cluster in a ring topology.
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Periodic Sender/Receiver task pairs are initialized on each node. The tasks have starting
times Of Tyend and Treey and deadlines of Dgeqa and Dy respectively. For any node i, the starting
time Ty (i) of the receiver task is

Trecv(l) = Tsend(i‘l) + Tstagger 1
The starting time Ty.,q for the sender task is
Tsend(i) = Trecv(l) + Drecv(i) (2)

On getting a message, the receiver task puts it in a shared memory area, which is then
forwarded to the next node by the sender task. The send and receive calls are non-blocking and

the application fails if a message is not ready when the call is made. The goal of this experiment

is to minimize the time the message is idle on the MCP (t4) as shown in the figure, by reducmg
Tslagger

As shown in the figure, the message reaches remote MCP at ( Tena(1) + O +oa+7vy),
where §, is scheduling overhead for node 1, o is the computation overhead of the send call, and y
is actual network latency Receive task starts retrieving the message at (Trec(2) +.6, ). Hence,
message idle time is minimized if

tigie = Treew(2) ~Tsena(1) +(82-81) - (@ +7y) =0 3

Note that Tena and Tyecy are measured with respect to the global clock on nodes 1 and 2.
This is subject to a worst case clock variation of € = +/- 5us. Taking that into consideration along
with equation (1), the above equation can be recast as :

Tstaggerv+8+(62’81)+-((1+’Y)=O ¢ . (4)
Hence,
TstaggerE€+(81—82)+a+lY )

To compute the minimum achievable Tyug,.r, several tests were done to establish bounds
on the actual network latency y [ 1lps.. 4us ] and scheduling overhead & [ 4us .. 25us ].

~ Uncertainty in scheduling overhead arises from hardware/software interrupt latency and cache

effects. o is almost a constant at 5 ps since BDM-RT provides deterministic send and receive
calls. As aresult in the worst case,

Togger = 10 +21 + 5 +4 = 40ps 6

Tseageer Was fixed at 45s and the experiment was successfully run a number of times with
periods of Sms and 10ms for 10,000 messages. Figure 3 shows the message idle time recorded on

the Myrinet board. The minimum idle time is 13ps, which suggests that we may be able to reduce
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Titageer to about 35us. However, experiments for stagger values under 45us did not always
succeed.
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Figure 3 Jitter in waiting time at Lanai

All 8 nodes were pinged every second with 8kB packets on ethernet for the duration of
the experiment. Figure 4 shows the actual time when a message is put in the user’s buffer with
respect to start of the receive task (T.,). The variation in the receive time is about 22us, which
reflects the jitter in scheduling overhead. The small 4is peaks seen in the graph are introduced
by the default RT interrupt handler, that records the occurrence of ethernet interrupt to be
serviced when Linux gets back on CPU. The worst case computation time for the receiving task
was established at 50us. The deadline D, is set as 75us ( worst case computation time +
scheduling overhead). As a result, the end-to-end message passing latency including the
scheduling overhead is:

Messaging Latency = (Tugeer + Drecv) =75 +40 = 115ps. )

The same experiment was repeated without ethernet traffic, and the jitter remained of the
same order, establishing predictability of BDM-RT in face of other PCI traffic.

An MPIRT library implementation on this platform can use this form of tuning to
accurately schedule real-time channels that use zero sided communication.

6 Conclusions

This paper describes the architecture and implementation of a Myrinet cluster of
workstations that is tailored for MPI/RT based distributed real-time applications and high
performance parallel applications using coscheduling and gang scheduling. The system features a
high-accuracy global clock that facilitates time-based coscheduling of real-time tasks using
Turtle, while allowing interactive usage of all workstations using Linux. BDM-RT is a low-jitter
and deterministic-overhead messaging layer. A sample ring application demonstrates the use of
this system and establishes bounds on worst case message passing latency.
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7  Future Work

Efforts are underway to implement a synchronized cluster using similar algorithms on
GPS hardware. Admission control and generation of global schedules is an area of intense
research, and several approaches based on genetic algorithms and reinforcement learning are
currently being investigated. An automated global scheduling algorithm will truly exploit the
architecture presented here for high performance real-time and non real-time distributed
applications. The cluster will serve as a base for the prototype implementation of time-based
MPL/RT channels with full QoS support.
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Several high-performance communication layers such as BDM, GM, and FM |
have been implemented over the high-speed Myrinet network. Their design
and interface are generally inadequate for both applications to specify QoS
requirements, and for the system to perform QoS-sensitive protocol processing and
resource management. ‘The primary contribution of this thesis is the design and
implementation of BDM-RT, the first known hard real-time Myrinéf messaging
layer. BDM-RT can proi)idé end-to-end guarantees on message latency and
bandwidth based on a fine grain global clock and bounded responée time at the
network interface. |

This thesis Wb_rks to prove the following hypothesis: There is a fundamental
dichotomy between the ‘design of low-level real-time and high-performance
messaging Iayers.. This implies that performance goals of high-speed messaging
layers influence their predictaﬁility, and that predictable communication requires
performance trade-offs. The hypothesis is proved by analysis of design of BDM

and BDM-RT and by experimental verification.
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CHAPTER 1
INTRODUCTION

1.1 Background

The Real-Time Messaging Passing Interface (MPI/RT) (Kanevsky, Skjellum,
and Watts 1997) is a recently emerging middieware standard for distributed
real-time computing. MPI/RT provides a notion of Quality of Service (QoS)
for development of real-time applications. MPI/RT supports three real-time
programming paradigms, namely — Time-based, Priority-based, and Event- .
driven programming models. In order to be able to provide QoS guarantees
for applications, the MPI/RT middleware requires real-time support from the
Operating System and hardware that lie below it. In this regard, MPI/RT is said
to impose “middle-down” requirements, that is, potential modification of operating
systems in order to meet its goal. No known implementation of MPI/RT with full
QoS guarantees exists to date. This is owed to both the relative infancy of the
standard and the challenges involved in its implementation. MPI/RT requires
support from a distributed real-time operating system that provides real-time
services that map well to the MPI/RT QoS model. PromisQoS (Apte et al. 1999,
221) is an envisioned time-based real-time operating system that is being designed
and implemented currently at Mississippi State University. The primary goal of
PromisQoS is to enable a prototype implementation of MPI/RT that provides
full QoS support for time-based real-time computation and communication. The

challenges involved in the development of PromisQoS are many. The envisioned
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system is required by MPI/RT primarily to provide bounded-delay messaging,
bounded-jitter process scheduling on a global clock, and temporal isolation of
processes to avoid contention of shared resources. The system is also required to
offer high performance by providing high bandwidth, low latency, and low overhead
communication. The basic building blocks of PromisQoS are its EDF TURTLE
scheduler, a high-precision ‘global clock, and a real-time messaging layer BDM-RT.
These components are those most essential for the implementation of the MPI/RT
Time-based real-time Channel abstraction (Kanevsky, Skjellum, and Watts 1997).
This thesis is based on the development of the real-time messaging layer BDM-RT
for PromisQoS.

1.2 Motivation

The motivation for this thesis work arises from the requirement of a messaging
subsystem with at least the following characteristics: Predictability and QoS
support, high bandwidth and low latency communication for high-performance
real-time distributed applications, and good mapping between channel abstraction
of MPI/RT and messaging system software.

Myrinet is a high speed gigabit per second networking technology that is
being used widely for high-performance distributed computing. Initial experiments
with Myrinet network latency have demonstrated its suitability for predictable

communication as well. Given the dual goals of performance and predictability for

- MPI/RT applications, Myrinet appears to be a suitable hardware platform for the

development of a messaging subsystem that allows efficient layering of MPI/RT.
Several high-bandwidth, low-latency messaging layers have been written over

Myrinet. Examples include Fast Messages (FM) (Pakin, Lauria, and Chien 1995)
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from University of Illinois, Urbana Champaign, Glenn’s Messages (GM) (Myricom,
Inc. 1999) from Myricom, Inc., BullDog MCP (BDM) (Henley et al. 1997)
from Mississippi State University, LANai Active Messages (LAM)" (von Eicken
et al. 1992, 256) from University of California, Befkeley, and Basic Interface for
Parallelism (BIP) (Prylli 1997) from Universify of Lybh, France. Most of these
messaging layers are used in distributed computing and are typically layered under
a middlewafe such as MPI (Snir et al. 1995) or PVM (Sunderam et al. 1994, 531)
However, real-time messaging over Myrinet is not currently popular. FM-QoS
(Connelly and Chien 1997) is the only known QoS based messaging layer, but is
not fundamentally a hard real;time messaging layer as it cannot provide guarantees
on end-to-end latency.

This thesis is motivated by the development of BDM-RT, the first global-clock
based real-time messaging layer on the high-speed Myrinet network (Boden et al.
1995, 29). BDM-RT was developed by the author of this thesis by re-engineering
the high-performance messaging layer BDM (Henley et al. 1997). The primary goal
of BDM-RT is to support the implementation of Time Based MPI/RT Channels
with full QoS guarantees. Performance is also important, but is a secondary goal.
The goal of providing QoS guarantees influences its design and makes BDM-RT

considerably different from traditional high-performance messaging layers. The

‘motivation of this'thesis lies in demonstrating the unsuitability of high-performance

‘messaging subsystems: for real-time communication, even if performance is an

important secondary goal for the real-time system. Further, it constructs an
alternative messaging layer to provide predictable communication and analyzes

its effect on the performance of the system.
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1.3. Hypothesis

This thesis hypothesizes that there is a fundamental dichotomy between
the design of low-level real-time and high-performance .messa.ging layers. This
work discusses the fundamental design differences between real-time and high-
performance messaging subsystems. This thesis works to show that the goals of
performance and predictability do not go hand-in-hand and that trade-offs are often
essential to improve one at the cost of the other; As a result, messaging systems
designed with the primary goal of performance are fundamentally unsuitable
for QoS based communication and hence cannot be used for a high-quality

implementation of real-time middleware such as MPI/RT.

1.4 Basis

The basis of the stated hypothesis is from initial expérimentation on latency
jitter! of periodic messages using BDM, and the 'design similarities of BDM with
other popular HP messaging layers such as FM and GM.

As pointed out by Mehra, Indiresan, and Shin (1996), a QoS-sensitive
messaging layer must be able to provide guaranteed bounds on transfer latencies
at the minimum.‘ Without a gﬁaranteed limit, such a layer‘ cannot organize its
transfers so as to meet the QoS requirements of the different applications that
it services. A real-time messaging layer in general needs to be aware of the
current traffic load (Connelly and Chien 1997) in order to plan its transfers in
the presence of real-time tasks with differing QoS requirements and best-effort
tasks. Alternately, the CPU. scheduler should be closely coupled with the messaging

subsystem so as to control the network traffic by planning appropriate global CPU

'Latency jitter is a measure of variation in message latency incurred by individual messages
of the same length exchanged between the same end-points.
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schedules for all communicating processes across the network. Messaging activity
has to be coupled with CPU schedules to synchronize receiving processes with
message arrival and to avoid buffer overflows. These basic requirements of an
real-time messaging subsystem are absent in messaging systems designed for high-

performance alone.

1.5 Scope

This work is based on real-time messaging software designed .over Myrinet
(Boden et al. 1995, 29). On a general level, this work is particularly applicable to
the design of real-time software on architectures with any or all of the following

features:

High speed networks where link bandwidth exceeds host-to-network interface

bandwidth

Networks with programmable network interfaces, and bus master DMA

capability

Cut-through switched networks as opposed to conventional packet-switched

networks

Systems where performance as well as predictability are important goals

Design choices that have been presented and discussed for real-time
communication are chiefly applicable to the MPI/RT time-based real-time
communication model, although some of these principles apply equally well to

systems based on the priority-based and event-based models.
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. 1.6 Contributions

The contributions of this thesis work are as follows:

1. By demonstrating that real-time messaging subsystems impose significantly
different design requirements as compared to their high-performance
counterparts, this work shows that it is not possible to layer a real-time
middleware such as MPI/RT on an existing high-performance messaging

layer when QoS guarantees are required.

2. Research in real-time messaging systems design has been focused around
conventional network hardware such as ethernet. The design of BDM-RT
introduces new concepts such as “blocking DMA” that addressb the issue
of resource management and traffic isoiation in fhe presence .of a network

processor and on-board DMA engines.

3. There have been several implementations of the Treal-time channel
paradigm over packet-switched networks (Mehra, Indiresan, and Shin 1995)
(Cilingiroglu, Lee, and Agrawala 1996). However, this is by far the first
known implementation of a real-time messaging layer that supports direct
layering of real-time channels on a worm-hole routed, cut-through switched

high-speed network such as Myrinet.

4. BDM-RT is the first known Myrinet messaging layer that implements a fine-

grain global clock to facilitate global message schedules.

5. BDM-RT and PromisQoS provide a testbed for a prototype implementation
of Time-based MPI/RT Channels with full QoS support. To date, no
prototype of MPI/RT with full QoS support has been developed. Successful
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implementation of MPI/RT over PromisQoS will serve as a proof of concept

for the feasibility of implementation of the MPI/RT Time Based Channel.

6. By demonstrating the dichotomy between the design requirement of high-
performance and real-time messaging layers, this thesis paves the way for the
design of high-speed network interface hardware that is particularly suitable

to both high-performance and real-time distributed computing.

1.7 Organization of this thesis

The remainder of this work is organized as follows. Chapter 2 introduces

the hardware and software configuration of .the system that BDM and BDM-

RT are implemented on. Chapter 3 reviews the basic requirements of real-time

communication subsystéms based on a literature review of existing systems and
past research in real-time communication. Chabter 4 reviews the goals and design
choices of high-performance messaging layers on Myrinet. Chapter 5 presents
the design of BDM and BDM-RT and discusses the rationale behind their design.
Chapter 6 analyzes in detail the unsuitability of BDM for real-time communication
as well as the impacf- on performance of BDM-RT at the cost of improved
predictability as compared to BDM. Chapter 7 outlines the experimehts that were
carried out to support the hypothesis and discusses their expected and actual

results. Chapter 8 offers conclusions and suggested future work.

51




CHAPTER 11
SYSTEM ARCHITECTURE

This chapter describes the hardware and software architectures of the
distributed system in which BDM and BDM-RT operate. This description has been
presented to allow the reader to better understand the influence of the hardware

architecture on the design of messaging layers over Myrinet.

2.1 Hardware architecture

The system consists of a cluster of PCs conneéted by a single 8-port Myrinet
switch. The chosen hardware conﬁguration represents a typical cluster of COTS
desktops, in keeping with the scope of the hypofhesis. Each host consists of a
Pentium Pro II 200 MHz processor, and uses the Intel FX440 chip-set. A single
32-bit 33MHz PCI bus is shai'ed by Ethernefi Myrinet and SCSI interfaces. This
configuration is representative of recent generation PC architectures. The Myrinet
PCI interface consists of the LANai 4.x processor with 1 MB of SRAM. The

Myrinet interface is described below.

2.1.1 Myrinet

Myrinet is a widely used high-speed network technology in high-performance
domains. Myrinet currently supports full-duplex connections operating at 1.28
Gigabits/sec, and Myrinet cut-through switches route based on message header

bits, with latencies as low as 0.5 microseconds. Figure 2.1 shows a Myrinet network
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Figure 2.1: Topology of a Myrinet Network
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degree of reliability in the Link Layer itself, with lessr.tha,n 1 bit-error for every
10'® bits transmitted. The recent genéfaﬁdxi Myrineiﬁ network interface typically
consists of an on-board processor (the ”LANai” processor), about 1 MB of SRAM
and three Direct Memory Access (DMA) engines. The interface is shown in figure
2.2. .

The three DMA engines are meant for DMA transfers to the network, from the
network, and between host and LANai memory. A custom built program called

the Myrinet Control Program (MCP) runs on the LANai processor. The LANai

Y of four hosts connected ilsing two 8-port switches. Myrinet networks provide a
\
|
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4.x series boards also contain a 32-bit Real Time Clock (RTC) that ticks every 0.5
psec.
2.2 Software architecture

Non-real-time!  Real-time

Tasks }  Tasks
1
MPI/RT.
Linux Applications
Applications
MPI/RT Channel
Implementation
Linux Kernel | = BDM-RT
and drivers | Messaging Layer

Real-time Kernel 11\)&1-1veret

—————————— PCI Interface - - ————————-

t
Non real-time | | BDM-RT MCP
hardware devices | (Control Program)
I
[

LANai Processor

Figure 2.3: Software Architecture

Figure 2.3 offers a broad picture of the various software layers in the system.
Real-time and non-real-time software layers are clearly segregated as shown by the
vertical dividing line in the figure. Non-real-time applications run as processes
on Linux, which itself is serviced by a real-time kernel. Real-time application
programs are written over the middleware MPI/RT which is layered on top of the
messaging library BDM-RT. At the bottom is a real-time kernel that encapsulates
the hardware from the upper layers. For real-time communication, BDM-RT

avails itself of services provided by the Myrinet device driver. On the Myrinet
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interface, the custom-built Myrinet Control Program (MCP) executes on the on-
board LANai processor. The messaging library communicates with the MCP using

shared memory flags on the LANai memory.
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Figure 2.4: Software Architecture of PromisQoS

2.2.1 PromisQoS framework

A detailed view of the PromisQoS Operating System is shown in figure 2.4. The
building-blocks of PromisQoS come from the RT-Linux (Barbanov and Yodaiken
1996, 19) framework. Real-time tasks (RT tasks) run.in kernel context over the

real-time PromisQoS real-time kernel (RT Kernel). Linux itself runs as a special

process that is guaranteed atleast 1 ms CPU time every 10 ms. The RT kernel
buffers all hardware interrupts and delivers them as software interrupts to Linux,
- when Linux is scheduled on the CPU (Barbanov and Yodaiken 1996, 19). RT
tasks in a single node communicate with other RT-tasks and best-effort Linux

processes using either PromisQoS’s shared memory (RT SHMEM) (Apte et al.
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1999, 221) or RT-Linux’s RT-FIFOs (Barbanov and Yodaiken 1996, 19). Channel
message transfer occurs across the Myri’net network via the BDM-RT library. Each
MPI/RT channel is implemented as an real-time task that performs communication
using BDM-RT.

PromlsQoS uses the. TURTLE Earhest-Deadhne—Flrst scheduler (Apte et al.
1999, 221), capable of schedulmg penodlc real—tlme tasks with periods as low as
60 usec. Every real-time task spec1ﬁes the followmg five task parameters to the
TURTLE scheduler: start-time (S), period (P), deadline (D), computation (C), and
end-time (E). All admitted real-time tasks are guaranteed C units of computation

time every period, before the deadline D elapses relative to the start of the period.

2.2.2 Clock synchronization module

PromisQoS uses a tightly synchronized global clock to schedule processes
across the network. The individual on-chip APIC Time-Stamp Counter on each
machine drifts with respect to the others, and varies with changes in the ambient
temperature, pressure and other effects. Hence a mechanism is required to keep
individual clocks synchronized. Internal clock synchronization (Stankovic and
Ramamritham 1993), that is synchronization of clocks with respect to one another

but not with respect to the outside world, is achieved by using a master-slave

~ mechanism. One of the nodes plays the master’s role and periodically broadcasts

the master time-stamp to all slaves across the Myrinet network. Every slave
maintains a virtual clock that is updated with the receipt of each master-clock
value at every re-synchronization period. The master and slave clocks run as real-

time tasks with a period of 1 second.
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Figure 2.5 shows the difference between the slave’s virtual clock and the
master’s clock at every re-synchronization stage. This gives a measure of the
accuracy of the global clock. -This mechanism achieves synchronization with an
accuracy of +4 usec. This is relatively fine grain accuracy for software based
clock synchronization. This fine grain accuracy is a result of introducing special
mechanisms in BDM-RT that keep the master’s clock “ticking” while in transit.
It is known that the accuracy of master-slave virtual clocks is limited by the
jitter in message transit time. In the case of Myrinet, end-to-end latency jitter
far exceeds 4 pys. BDM-RT reduces the uncertainty in clock message latency
by recording message delays incurred by the master clock message in various
stages of its transit. Using the recorded delays, slaves can estimate the master
clock value at the time of receipt of the clock message with high accuracy. The

clock synchronization algorithm is tolerant to faults arising from missed clock
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messages. Support for the abovementioned high quality transmission of clock
messages was written as a part of BDM-RT development by the author. The
fine-grain clock synchronization algorithm and its interface with the rest of the

system were developed by collaborators Pillai and Apte (Apte et al. 1999, 221).
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CHAPTER III
REAL-TIME COMMUNICATION

In a distributed real-time syétem, the communication subsystem is critical
infrastructure (Stankovic and Ramamritham 1993). The communication
subsystem must behave deterministically with respect to communications delays
and network resource access times. Some principles of real-time communication
based on past research are presented below. These principles govern the design of
real-time messaging layers such as BDM-RT. While this chapter presents design
essentials for real-time messaging subsystems in general, a detailed discussion of |

the design of BDM-RT appears in chapter 6.

3.1 Predictability

Predictability is a primary requirement of real-time messaging layers
(Cilingiroglu, Lee, and Agrawala 1996) (Stankovic and Ramamritham 1990, 247)
(Lee et al. 1996). Predictability implies determinism in message latency, protocol
processing delays, and access to shared resources involved in communication
including the requested bandwidth. Two popular approaches to achieving
predictability in complex real-time systems are the layer-by-layer approach and
the top-layer approach (Stankovic and Ramamritham 1990, 247). A real-time
system can be broadly viewed to be built of various hardware and software layers
such as semiconductor components, the hardware architecture layer, the operating

system layer, a middleware layer, and the application layer. The layer-by-layer
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approach is based on the assumption that a higher layer is predictable, if and only
if, the lower layer is predictable, while the top-layer denies the validity of this
assumption. To provide 100% guarantees on deadlines, as is required. by critical
tasks in a hard real-time system, a layer-by-layer approach is required (Stankovic
and Ramamritham 1990, 247). PromisQoS adopts the layer-by-layer approach to
enable the layering of a QoS based MPI/RT middleware with predictable messaging
support from BDM-RT layer.

3.2 Resource management

A real-time messaging subsystem takes into account all the shared resources
used by it and eliminates contention for these resources among the various
processes. Resource usage is managed by the subsystem either by providing a
resource reservation model as in RT-Mach (Lee et al. 1996), or by arbitrating
concurrent accesses based on priority or deadline of the processes involved (Mehra,
Indiresan, and Shin 1996). The system should have a mechanism to avoid priority
inversion, which can easily interfere with meeting QoS guarantees. The primary
resources involved in communication are as follows: network buffer space, host
CPU cycles, network co-processor CPU cycles, physical network media, and
shared system buses such as the PCI bus (Solari and Willse 1998). In a time-
based messaging system, resource contention should ideally be absent or should
be resolved in a known, bounded time. Sometimes, the accessibility of one or
more system resources may be dependent on the accessibility of another resource.
An example of this is that . memory, as a resource, can be accessed by a process
only when it is scheduled on the CPU, that is, when it has access to the CPU.

The RT-Mach team (Lee et al. 1996) has incorporated this into the notion of a
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controlling-resource and controlled-resource into their resource reservation model,
thus enabling centralized management of multiple related resources. This model
is however inapplicable in the presence of bus-master capable devices such as the
LANai PCI DMA engine. The PCI bus can be treated as a controlled resource
with the CPU as the controlling resource on1y> if all accesses to the PCI bus can
originate from processes that are currently using the controlling resource, that
is, the CPU. In our case, the MCP can initiate PCI ‘activity independent of the
host CPU, thus causing an inconsistency with the abovementioned requirement.
Chapter 5 explains how BDM-RT addresses tﬁe PCI bus isolation problem.

In cut-through worm-hole routed networks such as Myrinet, contention for the
Myrinet switch needs to be specially addressed. Packets arriving at a switch at
the same time with the same out-going port can block one another, introducing
unpredictability in network transmission latency. Global schedules of network
traffic are essential to avoid switch contention. FM-QoS (Connelly and Chien
1997) is a QoS based messaging layer on Myrinet that minimizes the problem of
switch contention by synchronizing link traffic based on feedback from network

DMA latencies. FM-QoS is described:in section 3.7.

3.3 QoS sensitivity

- A simple FIFO delivery of messages does not suffice to support the different
QoS requirements of real-time tasks, because FIFO delivery amounts to ignoring
differences in QoS requirements between processes (Mehra, Indiresan, and Shin
1996). Link traffic should be prioritized based on a scheme such as Earliest
Deadline First, or Weighted Fair Queuing to ensure that processes with the

most stringent QoS requirements are serviced first (Mehra, Indiresan, and Shin
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1996). In our context, MPI/RT provides QoS sensitivity by appropriately assigning
channel task parameters such as period, deadline, and computation time during the
MPI/RT Commit phase (Kanevsky, Skjellum, and Watts 1997). In other words,

channel messages are implicitly prioritized based on the CPU schedules.

3.4 Provision for bést-effort traffic

Real-time subsystems are normally designed to support a mixture of best-effort
and real-time traffic (RT traffic). In order to ensure that best-effort traffic does not
interfere with meeting the QoS requirements of RT traffic, it is required that these
forms of traffic be processed separately. The design should also ensure fairness to
best-effort traffic by not starving it. The system must clearly separate resources
such as buffer space, link bandwidth and CPU time for protocol processing between
RT and best-effort traffic. For example, in (Mehra, Indiresan, and Shin 1996)
three message queues are used: o.ne for real-time messages that are “on—t‘ime"’.
with respect to their deadline (highest priority), one for best effort traffic (medium
priority), and the third for real-time messages that are significantly early compared
to their deadline (least priority). This avoids starvation of best-effort tasks, while
still meeting the QoS requirements of the real-time tasks.

BDM-RT does not have explicit support for best effort traﬁi.ckbecause channel
priorities are assigned by the MPI/RT Commit function, which is transparent to
BDM-RT. Provision for best-effort aperiodic traffic is planned as a future goal
because of the complexity involved in admission control of such tasks. In the
current framework, BDM-RT can admit best—‘eff.ort tasks as periodic real-time tasks
with relaxed deadlines. This ensures fairness to best-effort tasks and at the same

time ensures that real-time tasks meet their deadlines. However, running best-

62




effort tasks as strictly periodic tasks makes BDM-RT insensitive to the bursty

nature of best-effort traffic.

3.5 Traffic isolation

The messaging subsystem must provide traffic isolation by forcing applications
to abide by their requested QéS 4requirements. A misbehaving task should be
disallowed from causing a failure to meet other tasks’ QoS requirements. In
the PromisQoS framework, the MPI/RT middleware and the TURTLE scheduler
together ensure that MPI/ RT channels adhere to their requested network resource
usage. MPI/RT polices PCI bus usage and network bandwidth usage by
performing run-time checks on the length of data transferred by each channel,
during every period. TURTLE checks bandwidth utilization of channel tasks by
policing its alloted CPU time. MPI/RT will produce an error if channel tasks
attempt to transfer more data than requested at the MPI/RT Commit phase
(Kanevsky, Skjellum, and Watts 1997).

3.6 Time-bound protocol processing

Protocol processing time should be predictable in order to achieve predictable
“end-to-end latency. Activities such as fragmentation, re-assembly, and queue access
routines should be time-bounded. Priority inversion in protocol prbcesSing is of
specific concern. For example, pfiority inversion can occur if the protocol st'ack
uses FIFO delivery and receipt, causing a high-priority receiving task td'poténtially
block until a lower priority task receives its message. Even with pri:(’)ritiz’ed delivery
such as EDF or priority-based delivery, priority inversion can occur if the protocol

stack is implemented in the kernel. Suppose a deluge of messages for low-priority
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tasks arrives at a node, the kernel processes these messages at kernel priorities
(which is normally high) and possibly even uninterruptibly, thus causing other high
priority tasks to starve. Several protocol processing software designs have been
suggested by Lee et al. (1996) to minimize inversion. These include performing
protocol processing using. a shared communication protocol server, prioritized
threads instead of a single high- or low-priority thread for message sending and
receipt, and the application thread itself. Using a shared protocol server allows
one to treat the server as a shared resource and apply the resource reservation
model to it. Using prioritized threads allows preemption of low-priority protocol
processing by high-priority ones. Application-level protocol processing amounts to
implementing a user-library, which moves protocol processing to application space.
BDM-RT is implemented as a user library with most of the host-side protocol

processing embedded into the application’s CPU time.

3.7 Real-time messaging on Myrinet

Myrinet has traditionally been wused for high-performance distributed
computing rather than for real-time communication, as discussed in Chapter 4.

FM-QoS (Connelly and Chien 1997) is the only known real-time messaging
layer implemented on Myrinet. Of the essential components of real-time messaging
layers discussed in this chapter, FM-QoS implements only a limited form of
. resource management. FM-QoS synchronizes link traffic to minimize switch
contention (Connelly and Chien 1997) and consequently reduces LANai-to-LANai
latency jitter. A brief description of FM-QoS is presented here. FM-QoS
adopts a technique called Feedback Based Synchronization (FBS) to achieve self-

synchronizing schedules that minimize resource conflicts. FM-QoS builds a global
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view of time at the network interface by periodically sending self:synchronizing
miéssages (Connelly and Chien 1997). These méssages are intended to block one
another at the Myrinet switch by virtue of having a common out-port. Based on
the effect of this blocking on the network DMA latency, FM-QoS estimates the
relative drifts of LANai clocks at the different nodes in the network to build a
global view of time. This facilitates creating conflict-free schedules of link traffic.

The inception of extraneous self-synchronizing traffic introduces an overhead
of up to 1% of the network bandwidth for an 8-node, 1-switch network. The
overhead scales linearly with the relative drift rates between the LANai clock‘s.
The scalability of this -solution is questionable because of increased overhead in
-the presence of multiple Myrinet switches. FM-QoS is compared with BDM-RT in

section 5.3.7.

3.8 Summary

To summarize,‘ fhe design of real-time me:ssaging subsystems needs to address
the following main issues: -predictability of message latency and protocol
processing, management of shared resources, QoS sensitive processing of tasks,
provision’ for best-effort traffic, traffic isolation, and time-bound and protocol
processing free of undesired priority inversion. In a Myrinet network, switch
contention and PCI bus’ contention need to be specifically addressed. FM-QoS
is the only known implementation of a Myrinet real-time messaging layer, but falls
short of meeting hard real-time requirements as it lacks explicit management of

the PCI bus."
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CHAPTER IV
HIGH-PERFORMANCE MESSAGING

This chapter highlights the goals of high;performance messaging systems and
discusses the key design issues involved in achieving these goals. Although much
of the discussion is applicable to high-speed networks in general, this chapter
focuses chiefly on Myrinet—liké high-speed hardware architectures. The network
interface is assumed to have Direct Memory Access (DMA) capability to access
host memory, and processing capability to offload protocol processing from the host
CPU. Another underlying assumption is that raw network bandwidth is greater
than that between the host and network interface, which is true of current high
speed networking technologies such as Myrinet (Boden et al. 1995, 29), Giéanet
(Giganet Inc. 2000), and ServerNet (Horst and Garcia 1997). The following
discussion applies in general to nearly all popular high-performance messaging
layers over Myrinet such as GM (Myricom, Inc. 1999), FM (Pakin, Lauria, and
Chien 1995), BDM (Henley et al. 1997), BDM/Pro (MPI Software Technology,
Inc. 2000), and AM (von Eicken et al. 1992, 256) A comprehensive overview
of the design of several high-performance communication systems on Myrinet is

discussed by Bhoedjang, Ruhl, and Bal (1998, 53).

4.1 Design issues

Performance goals combined with the underlying hardware characteristics such

as CPU speed, memory bandwidth, network bandwidth govern the messaging
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software design. Performance goals can be classified chiefly into the following

parameters (Bhoedjang, Ruhl, and Bal 1998, 53):
e Low message latency,
o High user—.level bandwidth, and
e Minimal processor overhead. .

The design is also influenced by other goals pertinent to high-performance

distributed computing (Bhoedja,ﬁg, Ruhl, and Bal 1998, 53) sucrh‘as
e Degree of reliability,
e Scalability, and
e Support for multicast operatidﬁs.

We now discuss the design choices available to messaging layers over a high-

speed Myrinet-like network, given the abovementioned performance goals.

4.1.1 Host memory to network interface transfers

Host-to-host data transfers consist of three transfer stages: ‘The 's'en'der’s‘ host
memory to network buﬂ'ér, the sender’s network buffer to the receiver’s network
buffer, and the receiver’s network buffer to host memory. Of these, two transfers
occur between host and network memory. There are two ways for performing
this transfer: Direct Memory Access (DMA), and Programmed I/O (PIO). The
presence of a master;capable DMA engine on the Myrinet network interface creates
the possibility of a host-initiated and MCP-initiated DMA. The effect of these

design choices on performance are discussed below.
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4.1.2 DMA vs. PIO

Fundéﬁlentally DMA is preferable to PIO for long transfers as the transfer
does not require the host CPU, thus allowing overlapping of computation with
communication. On a given hardware platform, if DMA is at least approximately
as fast as PIO then DMA is the clear superior choice for achieving high bandwidth.
However, on certain platforms PIO may be significantly faster than DMA. For
example, figure 4.1 shows the DMA vs. PIO bandwidths on an UltraSparc with an
SBus LANai interface. It is seen that Host-to-LANai PIO transfers are faster than
DMA, for all transfer sizes. On this platform, BDM uses PIO for host-to-LANai
transfefs and DMA for LANai—to—host tra,nsférs (Henley et al. 1997). However, on

a Pentium with PCI LANai interface DMA is superior to PIO as seen in figure

4.2. On this platform, BDM uses DMA for all transfers between host and LANai

memory. According to Bhoedjang, Ruhl, and Bal (1998, 55) examples of systems
that use DMA are VMMC (Dubnicki et al. 1997, 388), PM (Tezuka et al. 1998,
308), VIA on Giganet (Giganet, Inc. 2000), and GM.
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Figure 4.1: Raw SBus Bandwidth comparison on UltraSparc running Solaris
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Figure 4.2: Raw PCI Bandwidth comparison on Intel x86 running Linux

DMA involves a fixed set-ﬁp' cost that is absent in PIO. This normally causes

- DMA latencies to be higher than PIO latencies for short messages where the
DMA setup cost is comparable to the actual transfer time. Consequently,’ high
performance suBsystems such as BIP (Prylli 1997) use a combination of DMA and
PIO - with PIO for short transfers and DMA for long transfers.

4.1.3 DMA initiation and completion

On Myrinet, DMA is initiated by writing DMA parameters such as target
addresses, DMA length and DMA direction into on-board LANai DMA registers.
Because LANai memory is directly accessible by the host CPU, DMA initiation
can be done either by the MCP or the host library. The same applies to detection
of DMA completion, as it involves examining a LANai register value. Access to
LANai registers by the host is across the inter-connecting bus (e.g., the PCI bus)
and is bsigniﬁcantly more expensive than access by the MCP. For this reason, it is

more advantageous for the MCP to set up and complete DMA transfers between
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the host and. network interface. Another strong reason for avoiding the detection
of DMA completion. Polling will then compete against the DMA transfer for bus

cycles and affect performance.

4.1.4 Message receipt mechanism

Message receipt can be done either by polling or can be interrupt based.
Interrupt based receives incur less processor overhead because the host processor
does not waste CPU time to detect the arrival of a message. On the other hand,
polling eliminates an extra context switch which is better for latency. On systems
with high context switch ovefheads and high interrupt latencies, polling is the more
attractive option. FM, BDM, and BIP (Prylli 1997) do polling based receives.
Some systems also use a combination of polling and interrupts as an optimization
for latency and processor overhead. GM, VMMGC (Dubnicki et al. 1997, 388), and
U-net (von Eicken et al. 1995, 303). are examples of such systems. GM allows
user programs to choose the receipt mechanism by calling the appropriate receive
function at run-time. GM also supports a hybrid receive mode where the user

process polls for a finite duration before blocking on an interrupt.

4.1.5 Buffer queue management

Network buffer space is limited, and needs to be managed efficiently by
messaging subsystems. The simplest buffer mandgemeﬁt scheme is to use FIFO
- queues to store used and free network buffers. BDM, GM and FM use FIFO
queues for managing sent and received message buffers. Additional queues are
implemented to store messages for potential retransmission if reliability is desired.

FIFO queuing causes least queue-processing overhead, but at the same time
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imposes the restriction of in-order delivery of messages unless a tag-based de-
multiplexing scheme is implemented at the receiver side. For example, in BDM,
FM and GM out-of-order receives are not possible. Howéver,‘ GM has a provision
for sending high and low priority messages, which allows out-of-order transfer to
a certain extent. Typicall’jr; this is used by the distributed computing middleware
such as MPI (Snir et al. 1995) as follows: the high priority channel is used to send

small control messages while the low priority messages carry actual data. "

4.1.6 Zero-copy mechanism

Many messaging layers improve latency and bandwidth by avoiding making
extra copies of user data within host memory itself. If DMA is used, this requires
the user’s data to reside in DMA-able memory pages (to be pinned in physical |
memory and not swa.pped out by the Virtual Memory subsystem). Two ways of
achieving zero-copy is by pinning user pages to memory (if the O‘p'erating'S};stem
allows this) or by mapping pinned kernel pages to user space. GM supports both
methods of allocation by providing functions fo both allocafe a DMA-able region,
as well as to pin a portion of user’s memory. On Linux, BDM allocates kernel

pages and maps them to user space at initialization time.

4.1.7 . Reliability .

~ Nearly all Myrinet messagiiig' layers provide reliable communication. The
Myrinet Link layer itself provides a relatively high degree of reliability using é CRC.
Further, bit errors are as low as 1 in 10' bits transmitted. However, reliability is
desired to recover from receive buffer overflows. GM and FM provide a reliable,

ordered communication protocol. BDM provides a multi-protocol suite ranging
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from unreliable communication to reliable and ordered communication. Reliability
reduces performance because of the additional overhead of ACK/NACK packets.
However, low-level messaging provide reliability as it is a basic requirement in the
high-performance computing environment (Snir et al. 1995) (Sunderam et al. 1994,

531) and is too costly too implement in higherblayers.

4.2 Timeliness and resource management

Despite design differences between high-performance messaging layers such as
BDM, FM, GM, AM, VMMC, BIP, and U-Net, a common aspect of their design is
the absence of explicit mechanisms to ensure timeliness of message transfer in the
presence of contending traffic. These messaging layers are incapable of providing
specific guarantees on bandwidth and latency. It is seen that minimizing resource
contention, performing QoS sensitive processing, and providing bounded-time
message delivery do not appear among the goals of high-performance messaging
layers: In this respect, BDM is similar to all other high-performance layers cited
in this chapter.

The insufficiency of high-performance layers for real-time communication is best
illustrated by discussing a relevant MPI/RT development effort by the author cl>f
this thesis. Time-based MPI/RT Channel (Kanevsky, Skjellum, and Watts 1997)
was recently implemented over BDM/Pro (MPI Software Technology, Inc. 2000)
on a multi-computer platform. BDM/Pro is a high-performance messaging layer
that performs low-latency and high-bandwidth communication on certain Myrinet
based multi-computer platforms. For performing time-based communication, a
global clock was implemented by the MPI/RT messaging layer. The achieved clock

accuracy was of the order of 1 millisecond because of the absence of timeliness
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of clock message delivery by BDM/Pro. Compared to the microsecond range
“latencies of messages on Myrinet (Boden et al. 1995, 29) this'is unacceptable
granularity for time-based communication. In contrast, the BDM-RT based global
- clock (see section 2.2.1) achieves granularity that is realistically usable for real-time

communication.

4.3 Summary

In summary, high-performance messaging layers share the common goals of
low latency, high bandwidth, low processor overhead. The design of these layers is
influenced strongly by their goals. On a Myrinet-like architecture, various design
options exist with respect to activities such as the transfer mechanism between
host and network buffers, message receipt mechanism, zero-copy mechanism, and |
level of reliability. The hardware platform and Operating System parameters
generally govern the choice of these mechanisms. With respect to timeliness of
message delivery and QoS sensitive protocol processing, BDM can be considered
as representative of the other messaging layeré because of the absence of real-time

‘components in any of the high-performance messaging layers.
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CHAPTER V
DESIGN OF BDM AND BDM-RT

This chapter describes the design of BDM and BDM-RT. The key ‘aspects of
their design has been discussed and justified, keeping in view their differing goals
of performance and predictability. This chapter is a precursor to the next chapter
that discusses the impact of BDM’s design on its predictability and that of BDM-

RT’s design on its performance.

5.1 Méssaging Protocol

Both BDM and BDM-RT use the BDM unreliable protocol (Henley et al. 1997)
for message transfer, in keeping with Real-Time Channel semantics (Indiresan,
Mehra, and Shin 1995). A certain degree of reliability is achieved by the reliable
Myrinet link layer which o‘fvfer's bithrrors as low as 1 error in 10'® bits transmitted.
The protocol is simple and involves no handshake, acknowledgment, or flow control.
- When data is ready to be sent, the MCP at the sender’s node initiates a network
send DMA (sDMA). At the receiver’s node, the MCP detects the incoming packet
and issues a network receive DMA (rDMA).

5.2° BDM design

BDM for PromisQoS evolved from portihg the original BDM software (Henley
et al. 1997) for Solaris. However, certain aspects of its original design have been

changed to exploit the differences between the two Operating Systems and between
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Intel and UltraSparc hardware architectures. The porting and design changes were

implemented as a part of this thesis work.

5.2.1 BDM queues

BDM maintains five queues to buffer incoming and outgoing messages. These
queues are shown in the table 5.1, with a brief description of each queue. The
queues SBQ, SLQ, RBQ, RLQ, and WAQ are similar to their counterparts in
the original BDM (Henley et al. 1997), but are not identical in terms of the
status of user data associated with buffers in these queues. The elements in these
queues contain pointers to free or filled LANai buffers. In addition, they contain
information about each LANai buffer’s “shadow” buffer on the host. Shadow
buffers are DMAable buffers on the host that have a one-to-one mapping with
every LANai buffer. Shadow buffers are used by BDM to transfer data directly to
or from LANai memory via PCI DMA. | .

5.2.2 Message flow

To send a message, the sender | first allocates a free buffer using
BDM _Frame._malloc(). ‘This function provides the user with a handle to a free
LANai send buffer and ifs DMAable “shadow” buffer on the host from SBQ. After
filling the shadow buffer with user data, the function BDM _Frame.send() is called.
This causes the send buffer and its shadow buffer to be placed in SLQ. The MCP
in its mainloop pulls this buffer off the SLQ and initiates a PCI DMA to fransfer
user data from the shadow buffer in the host to its corresponding LANai buffer.
Upon completion of the DMA transfer, the MCP initiates another DMA (sDMA)

to send the data into the network. After the data has been completely transferred
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Table 5.1: BDM Queues

Queue Queue Name Description " Producer Consumer
SBQ Send Buffer Queue  Queue of free send-buffers =~ MCP Host
SLQ Send LANai Queue Queue of send-buffers with Host ~ MCP

valid user data in the
“shadow” buffers on the

- host :
RBQ Receive Buffer Queue Queue of free receive- Host MCP
‘ buffers
RLQ Receive LANai Queue Queue of receive-buffers MCP Host
‘ © with valid data in the
LANai buffer
WAQ Wait for Ack Queue Queue of - filled send- MCP MCP

buffers that have been
already sent by a reliable
protocol and awaiting an
acknowledgment from the
receiver

out the network, the LANai buffer - shadow buffer pair is put back into SBQ.
Figure 5.1 shows the various states of a send buffer.

On the receiver’s 'side, the MCP allocates a receive buffer from RBQ and checks
for arriving network traffic in its mainloop. Upon detection of message arrival, the
MCP performs a network receive DMA (rDMA) to transfer data into LANai buffer
space. The message is then transferred to the LANai buffer’s shadow location on

the host by initiating a PCI DMA transfer. Upon completion of this DMA, the

- MCP puts the buffer pair into RLQ. The host program calls BDM _Frame._recv()

. to receive this message, and subsequently frees the buffer into RBQ by calling

BDM _Frame_free(). Figure 5.2 shows the various states of a receive buffer.
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.{ Free Buffer is added
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Shédow buffer in
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SBQ

(MCP) linitiates network  ° (Host) BDM_Frame_send()
send DMA, detects completion calls SLQ Put
and calls SBQ_Put

Buffer is added to

. Buffer is removed
the tail of SLQ

from the front of
(MCP) Initiates\SLQ
PCI DMA and

detects completion LANai Quenes
SBQ: Send Buffer Queue (free bufs)
SLQ: Send LANai Queue (filled bufs)

L.ANai Buffer now
has user data

Figure 5.1: BDM Send Queues

5.2.3 Message receipt

9.2.3.1 Polling vs. interrupt-based

BDM uses polling to detect the receipt of messages. The trade-offs involved
between polling and interrupt based receipt has been discussed in section 4.1.4. In

brief, BDM uses: polling to tradeoff processor overhead for better latency.

'5.2.3.2 The receive function

BDM messages are received via the function BDM_Frame.recv(). "A call to
BDM;F‘rame:recv() looks for a received message that has already been transferred
to thé host. The BDM MCP transfers all received messages to the host as soon
as they are received. A call to BDM_Frame_recv() succeeds if there is at least one

message in a shadow receive buffer on the host.
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RBQ: Receive Buffer Queue (free bufs)
RLQ: Receive LANai Queue (filled bufs)

Figure 5.2: BDM Receive Queues

Rationale: In }this design of message receipt; the MCP transfers incoming data
to shadow buffers on the host in a best-effort fashion without waiting for the host
to call the receive function. An alternative design is to cause BDM _Frame_recv()
to look for messages received and buffered in the LANai itself, and then request,
the MCP to initiate a DMA transfer to the host. The receive function should then
detect DMA completion and return. The chosen design is better as compared to the
cited alternative for the following reasons: The message latency is better because
we do not need any LANai memory accesses across the PCI bus either to detect a
received message or to initiate PCI DMA transfer or detect its completion. Latency
is also reduced by minimizing the time spent by received messages in the LANai
buffers before being. transferred to the host. Lastly, we get better bandwidth by

avoiding blocking in the receive function for the duration of the PCI DMA transfer.
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Figure 5.3: Receive Semantics for BDM

5.2.4 Host-LANai data transfer

BDM uses PCI DMA rather than PIO for all transfers between host and LANaij
memory. Initiation and detection of completion of DMA transfers is done by the
MCP.

The choice of performing DMA over PIO is best for bandwidth because of
superior PCI DMA rates as compared to CPU assisted copy on our architecture 2.1.
The bandwidth for both DMA: and PIO are shown in figure 4.2. Because of superior
bandwidth for both reads and writes, PCI DMA is used at both the sender’s and
receiver’s end. However, it must be noted that PIO is better than DMA for short
message latency, because of the absence of fixed DMA set-up overheads. Thus, it

is best to use a poly-algorithm that chooses between PIO and DMA based on the

message size.
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Figure 5.4: Send Semantics for BDM

5.2.5 Message receipt order

All queues in BDM are FIFOs. BDM Frame.recv() returns messages in the
order they arrived at the LANai. No tag-based de-multiplexing is implemented, as
it not directly related to its primary goal of reliable ahd efﬁcient coinmunication.
Such a de-multiplexing mechanism can always be implemented at a higher layer if

desired by applications, though at some cost of performance.

5.3 BDM-RT design

"This section outlines the key design aspects of BDM-RT, given its goals of

predictable and QoS-sensitive communication. Performance is also important, but

is a secondary goal.
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5.3.1 BDM-RT queues

of each entity.

BDM-RT maintains threevbuffer queues for managing incoming and outgoing
messages — SBQ, SLQ, and RBQ. These are identical to the ones in BDM described
in 5.2.1. RLQ is replaced ;by DLL - a linked-list of filled LANai buffers. WAQ
is absent b:éébaﬁsé} of the unrehable protocol used in Channel communication.
BDM-RT also maintains another linked-list DBL, which is a list of free structures
contai;ing information'uséﬁil fof. PCI DMA in addition to a pointer to a free buffer

from RBQ. These queues and lists are shown in table 5.2, with a brief description

Table 5.2: BDM-RT Queues and Lists

Queue Name

Description

Send Buffer Queue
Send LANai Queue

Receive Buffer Queue

DMA Buffer List

DMA LANaj List

Queue of free send-buffers
Queue of send-buffers with
valid user data in the
“shadow” buffer on the
- host -
Queue of free receive
buffers ‘
Linked list of free receive
buffers with DMA
information .
Linked list of LANai receive
buffers with valid user data
ready to be transferred to
the host upon request

5.3.2 Message flow

On the send side, the message flow is similar to that described in BDM
design in 5.2.2. The only difference on the send side is that the send function
BDMRT Frame_send() returns only after waiting for the sent message to be

transferred into LANai memory. Figure 5.1 shows the various states of a send
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buffer. On the receiver’s side, the MCP allocates a receive buffer from RBQ
and a DMA-info element from DBL and checks for arriving network traffic in
its mainloop. After receiving data, the MCP fills the received tag information
and buffer address into the allocated DMA-info element and places it in DLL.
When the host calls BDMRT Frame._recv() With a tag, the MCP searches DLL
for the earliest message received with the specified tag. If found, the message
is transferred to the host buffer via PCI DMA. Upon completion of this DMA,
the MCP puts the DMA info element into DBL and signals the host by setting a
shared flag. The call to BDMRT Frame recv() returns successfully and returns a
pointer to the received-message. If a message with the specified tag is not found,
the MCP signals failure information to the host, and BDM _Frame_recv() returns
failure. After a successful receive, the host frees the buffer into RBQ by calliﬂg

BDMRT Frame free(). Figure 5.5 shows the various states of a receive buffer.

‘ . . (MCP) Receives network
(MCP) Calls RBQ_Get data (DMA)

Buffer is removed LANai buffer
from the front of is filled
RBQ

Free Buffer is adde
totailof RBQ -

. (MCP) Initiates
(Host) Uses data and PCI DMA and
calls BDM_Frame_free() detects completion.
which calls RBQ_Put ,

y

Buffer is removed
from the front of

RLQ

Shadow buffer no
has user data

.Buffer is added to
the tail of RLQ

(MCP)RLQ_Put
(Host) BDM_Frame_recv o
calls RLQ Get LANai Queues

RBQ: Receive Buffer Queue (free bufs)
RLQ: Receive LANai Quene (filled bufs)

Figure 5.5: BDM-RT Receive Queues and Lists
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Rationale: The message flow is based on synchronizing local resource accesses
with the local CPU schedules. Network profvocol‘ processing is tightly coupled
with the CPU schedules to minimize contention for loéaﬂy shared resources. The
message flow is also designed to minimize contention of globally shared resources
- namely the switcﬁ and network bandwidth - by adopting globally Synchronized
message transfers. Notice that by synchronizing the send-side host-to-LANai DMA
transfer with the sending task’s CPU schedulé, and the receive-side transfer to the
receiving task’s CPU schedule we use a mixture of “push” and “pull” models of
communication. At the sender’s node, the data is “f)ushed” to the local LANai
buffers in accordance with its schedule, while the data is “pulled” out of the

receiver’s local LANai buffers only after the process is scheduled locally on the

CPU. The key aspect, of course, is that predictable message transfer between the

two LANai interfaces has to be ensured. This is achieved ‘by globally scheduling
all contending senders across the network using BDM-RT’s fine grain global clock.
Combined ‘with bounded-time protocol processing at the MCP, this will ensure
that no two messages with the same destination port will arrive at a switch at the

same time.

5.3.3 Message receipt

BDM-RT uses polling rather than intgrrup’ts in keeping with the philosophy of
the time-based real-time baﬁerating System PromisQoS. In a time-based system,
all events such as inessage receipt, are expected to .o'ccA1‘1r at their scheduled time-
intervals which precludes asynchronous events such as interrupts. Message receipt
at the host occurs as follows: A call to the receive function BDMRT Frame recv()

sets a flag on the LANai. Upon detecting this set flag, the MCP searches the
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- list of received messages on the LANai for a received message that matches the
requested tag. Then the MCP sets another shared flag to indicate the result of the
search, and initiates a PCI DMA transfer to the host if found. If found, the host
waits for the estimated duration of PCI DMA before polling for DMA completion
at regular intervals of 5 psec. If no matching message was found, the function
BDMRT Frame_recv() returns failure.

Rationale: The three main aspects of this receive semantics are as follows: PCI
DMA occurs only after a call to BDMRT Frame_recv(), the MCP initiates and
finalizes DMA transfers, and the BDMRT Frame_recv() function blocks the host
CPU until the transfer is complete. The rationale for performing PCI DMA only

upon a call to BDMRT _Frame._recv() is to couple the PCI bus resource to the host

CPU, which itself is managed by a real-time scheduler. This coupling automatically -

leads to a QoS-sensitive management of the PCI bus as it becomes a controlled
. Tesource (Lee et al. 1996) with the host CPU as the controlling resource (Lee et
al. 1996).

‘For better overall latency, the MCP initiates DMA and detects its completion,
instead of the host library. However, latency jitter is introduced because of the time
that.elapses between the host setting the ready flag and the MCP detecting the set
ﬂe.xg in its mainloop. This jitter component is absent if the host directly initiates
DMA by writing to LANai DMA registers. The rationale for choosing the MCP
to initiate DMA is that the maximum jitter introduced by this was empirically
measured to be less than the latency overhead introduced by the host directly
initiating DMA. A DMA transfer requires the writing of four LANai registers:
the source address, the destination address, the DMA direction, and the number

of bytes to transfer. The latency of a single LANai DMA register read/write
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operation across the PCI bus (i.e., from the host) is as high as 5 psec,” while it
is less than 0.1 psec when done from the MCP. Thus if the host sets up a DMA,
we incur a 20 psec latency increase. On the other hand, the maximum measured
interval between two successive polling operations in the MCP to detect if the host
has set the ready flag is approximately 6-8 usec, which is a clear performance gain.

BDM-RT performs what we have termed as “blocking DMA” transfers between
the LANai and Host. The host CPU is blocked by the receiving BDM-RT task
during the entire duration of a PCI DMA transfer. The main reason for this is
to disallow potential PCI bus users from being scheduled on the CPU during an
on-going Myrinet PCI DMA. This greatly reduces PCI bus contention from non-
real-time Linux applications serviced by the Ethernet and SCSI drivers, leading to
an improvement in DMA latency predictability.

“Blocking DMA” represents' a classic tradeoff between performance and
predictability. CPU utilization and overlap of computation and communication
are traded off for better predictability of DMA latency. For short transfers, the
blocking duration is acceptably low (= 5 useé for transfers up to 512 bytes). For
long messages, this involves greater wastage of CPU time (= 62 usec for 8000
bytes). However, compared to Programmed I/O (~ 280 psec for 8000 bytes),

- “blocking DMA” still consumes significantly lesser CPU time.

5.3.4 Host-LANai data transfer

BDM-RT uses PCI DMA rather than PIO because performance is also a
goal. BDM-RT uses “blocking DMA” semantics for both LANai-to-host and
host-to-LANai PCI DMA. A call to BDMRT Frame.send() sets a ready flag
on LANai memory. When the MCP detects this flag, it initiates a DMA

85




Received
Packets * ) l
(rDMA) - ‘

- PCIDMA

cPUslor_| Rl | |R? RS

Time

Figure 5.6: Receive Semantics for BDM-RT

transfer. BDMRT Framesend() returns after holding the CPU idle for the
estimated average duration of PCI DMA for the given message length (calculated
empirically). Note that although this is similar to the blocking nature of the
receive function, BDMRT Frame_send() does not wait until the actual completion
of the DMA unlike BDMRT Frame._recv(). Figure 5.7 illustrates the time-line of
activities associated at the send side. |

Rationale: “Blocking DMA” improves the predigtability of DMA latency and
consequently the predictability of the overall message latency as discussed for
receive side LANai-to-host PCI DMA. The reasons for avoiding blocking until the
actual completion of host-to-LANai DMA are (a) to avoid extra processor overhead
associated with the host detecting the DMA completion, and (b) to avoid the ill-
effects of polling (for detecting DMA completion) on the jitter of the PCI DMA
latency. BDMRT Frame_send() instead blocks until the average duration of PCI
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DMA latency elapses. In the worst case, BDMRT Frame_send() still polices the
major part of the PCI DMA transfer even if the actual transfer duration exceeds

the estimated average.

5.3.5 Resource management

l The chief resources required to be managed by BDM-RT to provide QoS-

sensitive' communication to various real-time tasks are liéted below.
e Network bandwidth,

PCI bandwidth,

LANai buffer Space, and

LANai CPU time.
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The following sections describe how each of these resources is managed by

BDM-RT.

5.3.5.1 Network bandwidth

Network bandwidth deprivation is mainly caused when a message blocks at
the switch because of contention from another message with the same out-port.
Network bandwidth is managed by preparing message schedules based on a fine-
grain global clock. BDM-RT provides a mechanism for high-quality transmission
of periodic clock synchronization messages, to facilitate the implelﬁentation of a

high accuracy global clock. This was described in section 2.2.1.

5.3.5.2 PCI bandwidth

The LANai4.x PCI DMA engine can perform one DMA transfer at a time,
in half-duplex fashion!. Thus bus contention can exist between sending aﬁd/or
receiving BDM RT tasks. PCI bandwidth is managed among BDM-RT tasks by

-performing PCI DMA transfers during a task’s CPU time. This totally eliminates
- PCI bus contention between BDM-RT tasks; and greatly reduces the effect of
bus contention from the PCI ethernet device transferring non-BDM-RT best-effort

Linux traffic.

5.3.5.3 LANai buffer space

Ideally, it is desirable to allocate a separate buffer pool for each MPI/RT
channel task. Because of limited memory on the LANai interface, this solution

does not scale well, although it provides good resource isolation. LANai buffer

'LANai5.x and higher change this to allow two DMAs, only one progressing per unit time.




space is organized in send and receive queues as described in section 5.3.1. The
limit on LANai buffer space imposes an extra constraint on message scheduling in
order to ensure that the receiver’s buffers do not overflow at any point in time.

This is not a trivial problem, particularly when one scales to larger networks.

5.3.5.4 LANai CPU time

LANai CPU time is spent mainly between-protocol processing and initiation
and completion of DMA transfers to and from the host and network. The LANai
processor has its own 32-bit Real Time Clock that is not synchronized to the host
clock. Because of the absence of a view of global time, the MCP does not attempt
to schedule protocol processing or DMA activity. Instead, it provides bounded
response time to all events by avoiding any blocking activity in its mainloop. For |
example, the MCP never blocks on any type of DMA to ensure that other messages

waiting to be processed are serviced with bounded latency.

5.3.6 Priority ihversi_on

BDM-RT avoids priority -inversion by ‘(a) embedding most of the protocol
processing overhead in the tasks’ CPU time and by (b) allowing out-of-ordér receipt

of messages.

5.3.7 Comparison with FM-QoS

FM-QoS (Connelly and Chien 1997) was mentioned as the only known
implementation of a real-time messaging layer on Myrinet and was described in

section 3.7. To highlight BDM-RT as one the significant contributions of this
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thesis work, BDM-RT is compared to FM-QoS with respect to predictability and
performance overhead. .

While FM-QoS guarantees bounded latencies between LANai interfaces, BDM-
RT goes a step further to guarantee bounded end-to-end latency. This is a result
of explicit PCI bus management and bounded MCP response-time in BDM-RT.
BDM-RT and FM-QoS differ in their approaches to provide global synchronization.
BDM-RT tightly couples link schedules with CPU schedules that are based on a
global clock (see section 2.2.1) at the host. On the other hand, FM-QoS de-couples
~ the network processor from the host processor and schedules link traffic based on
a global view of time at the network interface. Consequently, FM-QoS facilitates
conflict-free link traffic schedules, while BDM-RT facilitates conflict-free end-to-
end message schedules.

FM-QoS views network bandwidth as a series of slots (Connelly and Chien
1997), each of which has to be fully alloted to a single process (or channel).
The granularity of clock synchronization in FM-QoS is dependent on the chosen
duration of slots. For a realistic slot duration of 12 usec (Connelly and Chien 1997),
~ self-synchronizing traffic can have periodicities between 12 and 36 milliseconds
(Connelly and Chien 1997) and can yield accuracies of about +6 usec (half the
slot duration). In comparison, BDM-RT implements a global clock accuracy
of +4 usec with re—sygchronizing__ periods as large as 1 second. In addition,
- re-synchronization traffic in BDM-RT consists of 12-byte sized clock messages
compared to significantly longer self-synchronizing messages in FM-QoS (e.g., 2
KB sized messages for 12 usec slots). Consequently, the overhead for BDM-RT
clock synchronization is significantly lesser than that reported for FM-QoS by

Connelly and Chien (1997). For example, on a 8-node, 1-switch network with clock
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drifts of 200ppm, BDM-RT consumes less than 140 psec of link time every second
amounting to an overhead of =~ 0.014%. FM-QoS incurs an overhead of 0.32%
(Connelly and Chien 1997) for the same configuration and comparable accuracy.
The overhead of the FM-QoS synchronization technique for multiple-switch
networks is not clear from the available literatire. Self-synchronizing schedules
become complex in the presence of multiple switches (Connelly and Chien 1997).
Such a problem does not with' BDM-RT arise because of the relative simplicity of
the master-slave synchronization scheme adopted by the global clock algorithm.
Although the synchronization overhead in BDM-RT increases linearly with the
number of nodes in ‘the network, the absolute overhead on link bandwidth works

out to be less than 0.2% for networks with as many as 100 nodes.

- 5.4 Summary

The key design components of BDM and BDM-RT were presented in this
chapter. A rationale was pfovided for all adopted design choices in BDM and
BDM-RT. o |

BDM was ported to PromisQoS as a part of this thesis work to study its
performance and predictability. BDM performs strictly FIFO queue processing
to minimize overhead. The messége flow in BDM involves: PCI DMA transfers
initiated by the MCP in' a work-conserving fashion. The send function sets a flag
on the LANai and returns, while the actual PCI DMA transfer takes place when the
MCP detects the set flag. The receive function BDM _Frame._recv() returns the first
message that has been fully tran'sferfed into. host memory. These design choicés

are governed by the performance goals of low latency, low processor overhead, and

high bandwidth.
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BDM-RT was designed and implemented as a part of this thesis work to provide
hard real-time communication for MPI/RT Time-based Channels (Kanevsky,
Skjellum, and Watts 1997). It is the first known hard real-time messaging layer
on Myrinet. BDM-RT delivers messa.gfes‘in FIFO order, but allows for a tag-based
demultiplexing s‘che"me at the re.cei\;er’s. end. PCI DMA activity in BDM-RT is
synchronized with the send and receive functions that block duririg DMA transfers.
BDM-RT has explicit support for high-quality transmission of clock messages to
allow the implementation of a fine grain globaliclock. The abovementioned design
components improve the predictability of BDM-RT‘message latency arici minimize
coiitéiltion of shared resources. | |

A comp::irisori of BDM-RT with thé only other real-time Myrinet messaging
layer NFM—QOS shows that BDM-RT goes i)eyond FM-QoS to provide predictable -
end-to-end latency. Additionally, the global clock overhead of BDM-RT is about an
order (if magnitude lesser than the synchronization.overhead incurred By FM’-QOS
for comparable accuracies.

Having presented the detailed design of BDM and BDM—RT, the next chapter

analyzes their design differences with respect to predictability and performance.
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CHAPTER VI
COMPARISON OF BDM AND BDM-RT

This chapter demonstrates the fundamental dichotofny between the low-level
design of a real-time messaging layer and that of a high-performance messaging
layer. ‘BDM, which was designed for performance, has beeli analyzed with respect
to its unsuitability for real-time message transfer.‘ The various coiiipoiients of
BDM that primarily enhance performance but negativeiy impact tiine—lines are
discussed. Likewisé, aspects of design in BDM-RT that enhance its predictability
are evaluated for their performance. In this chapter we compare and contrast
design choices made for BDM and BDM-RT and their effect on performance and
timeliness of message delivery. It should be noted that BDM RT evolved from
BDM by modifying its design to make BDM-RT predlctable and QoS-sensitive.

6.1 Performance—predictabiiity trade-offs

This section gives some background on the requirement of trade-offs between
predictability and performance for messaging layers built on COTS platforms.
Games et al. (1995) have addressed the question of whether general purpose
commercial massively parallel processors (MPPs) can be used for computationally
intensive real-time applications. The study focused around real-time scheduling of
communication between processing nodes, and providing the desired predictability
without undue sacrifice of performance (Games et al. 1995). Mpyrinet clusters

of general purpose desktops bear strong resemblance to MPPs in terms of the
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underlying network chafacteristics. It is clear from the analysis of MPPs by Games
et al. (1995) that the high-capacity of Myrinet-like networks does not necessarily
translate into predictable communications performance, -

Although performance trade_—offé are not always necessary for real-time
communication, they are often required because of hardware architectural
constraints. As is the case with Myrinet and with COTS platforms, the hardware
offers minimal or no provisions for timely accesses to resources. Consequently, it
" becomes the responsibility of real-time software to make appropriate design choices
potentially at the cost.of performance. As an examplé, consider a hypothetical
activity of performing perivodic DMA transfers between host and LANai memory
at a Myrinet interface. For best predictability, the transfer should occur during a
scheduled time-interval based on the host’s APIC timer valge. Using the on-board
LANaij DMA engine for DMA transfers, there is a choice between using the host
f)r the MCP to initiate the transfer. For best timeliness, the host should initiate
‘the DMA transfer because the host can access APIC timer values much mofe
accurately than the MCP. But with regard to performance, this degrades message
transfer latency because access to DMA registers from the host is much slower
than access from the MCP. Here, the conflict between performance and timeliness
arises because of the unavailability of a ﬁne;grain clock on the LANai board.

As a second example, access priorities (Myricom Inc. 1996) govern accesses to
LANai memory by the LANai processor, by the host processor, and by the on-
béard DMA engines.. In the absence o‘fi .other PCI bus éontenders, the access-time
for the» host processor to LANai mémory is most predictable as it is of highest
priority, But is also the slowest as it involves an access across the PCI bus. This

makes accesses from the host more predictable, but poor in terms of performance.
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- Modern systems provide a good level of ﬂexibﬂity by supporting multiple
configurations of system 'para.me’terS'a,t' the BIOS level. Appendix A contains a

discussion on exploiting the programmability of PCI configuration registers (Solari

“and Willse 1998) and other hardware solutions to improve the predictability of the

system. None of the hardware/firmware solutions proposed in appendix A were
adopted ‘as they are highly dependent on the adherence of device manufacturers

to the PCI standard and sometimes require specialized hardware.

6.2 - BDM and BDM-RT: Design differences

In this sectioﬁ, the chief compOﬂeﬁts of BDM and BDM-RT are compared and
contrasted. The analysis of BDM and BDM-RT design is organized as.follows: For
each design component, the choice ‘of design adobted by BDM is first described
and then justiﬁéd by providing the design rationale. The design is then evaluated
with respect to its (un)suitability to predictable message passing. On similar lines,
each design component of BDM-RT is described and justiﬁed. The design is then
evaluated with respect to its effect on the performance of the system. It will be
shown that in most cases, BDM is uiisuited for real-time communication and that

BDM-RT makes performarce tradeoffs to achieve the desired predictability.

5.2.1 MCP main-loop’

As stated in chapter 2, the Myriﬁét' Control Piogram (MCP) runs on the LANai
processor and buffers data going bug 2of the host ‘and cbming in from the network.
An MCP tybiéallsr runs in an infinite loop (the main-loop), handing off to and

réceiving' buffers from the host library and the network.
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6.2.1.1 BDM

A simplified pseudo-code for the BDM-MCP main-loop is shown below:

1 while (1)

2 do

3 /* Sending messages */

4 if (An initiated network send DMA has completed)

5 (No network send DMA was initiated) '

6 then

7 /* Sending: Buffer management */ .

8 if (An initiated network send DMA has completed)
9 then

10 Put buffer back into free-send-buffer-queue

11 fi '

12

13 /* Sending: To Network*/

14 if (An initiated Host—LANai PCI DMA has completed)
15 then

16 Start DMAing the buffer out the network

17 fi

18

19 /* Sending: Host—LANai */

20 if (No Host—LANai PCI DMA is in progress) and
21 (Host has queued any buffers in sénd-buffer-queue)
22 then _

23 Wait for any ongoing LANai—Host PCI DMA
24 : and Hand buffer to host. /* Blocking */

25 Initiate Host—LANai PCI DMA for the first
26 buffer in the send queue.

27 i -

28 fi

29 , S -
30 /* Receiving: From network */ |
31 if (Message is waiting to be received from the network)
32 then

33 Initiate receive-DMA

34 Loop until DMA finishes /* Blocking */

35

36 /* Receiving: LANai—Host */
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37 if (LANai—Host or Host—LANai PCI DMA is in progress)
38 then

39 : ‘wait for PCI DMA completion /* Blocking */
40 fi '

41 Initiate LANai—Host PCI DMA.

42 fi

43

44 /* Receiving: LANai—Host */

45 if (An initiated LANai—Host PCI DMA has completed)
46 then

47 Put buffer into received-msg-queue on host

48 fi

49 done /* while */

Rationale: As is evident from the pseudo-code, the MCP essentially manages
sending and receiving data using the three on-board DMA engines and buffer A
queues on LANai buffer space. BDM-MCP is designed for minimal message
latency. Highest priority is given to servicing received messages so as to minimize
receive-buffer overflows and consequent re-transmission leading to performance-
loss. At three points in the code (commented as “blocking”), the MCP' waits on
the completion of DMAs. - A blocking network receivé DMA is used to reduce
message latency. The other two waits for gompletiqn of previously initiated PCI
DMA transfers are negesSar_y to avoid starvation of LANai—Host traffic in the
presence of potentially toob ma.rlly‘ba“ck‘;té;back Host—LANai transfers ;nd vice
versa. (Access to the PCI bus is basically half-duplexb'because a single DMA
engine that manages both directions) BDM uses buffer queues on the LANai with

“shadow buffers” allocated in DMAable memory on- » the host. For every buffer
on LANai memory, ‘there is a corresponding “shadow buffer” on the host that
goes through the same states as the original buffer. The notion of shadow buffers

simplifies queue management between MCP and the host library. When a message
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is received into a LANai buffer it is DMA-ed to its shadow location, after which
it becomes available to the host (upon a call to BDM_Frame_recv()). The MCP
initiates and winds up PCI DMA transfé;s, instead of the host library, because
access latency for DMA engine registers (on-board) is much lower from the MCP
as compared to that from host CPU.

Effect on predictability: The three segments of code where the MCP waits on
the completion are clearly detrimental to the predictability of protocol processing
latency and message latency in general. Considerable jitter in message latency can
result because the MCP may be busy waiting on the DMA completion of another
packet. For example, if the host puts a message into the send-buffer-queue and
the MCP has just begun to DMA 'a received méssage, significant time will have
passed before the MCP detects the presence of this buffer in the send-buffer-queue.
Let us say, the host sends a 100 Byte meséage, and that an 8KByte packet arrives
exactly when the host places the buffer in the send-buffer-queue. The MCP can
spend as much as 50 usec on the blocking receive DMA (line 34 of pseudo-code)
assuming a DMA bandwidth of 160 MB /éec. Let us further assume that another
8KByte inessa’gé was received just before this one. The MCP can then spend up to
30 psec waiting for the LANai—Host PCI transfer (line 39) to complete. (It takes
80 psec for a PCI DMA assuming a bandwidth of 100MB/sec, of which.at least
50 usec have passed during the above mentioned network receive DMA). Thus,
the MCP could take as much as 110 usec before detecting the ‘buffer in the send-
buffer-queue. Comparing this to the end-to-end message latency of 55 usec; this is
clearly an unacceptable latency jitter. Other threats to predictability arising from

PCI bus contention also exist, and are discussed individually in the sections below.
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6.2.1.2 BDM-RT

A simpiiﬁed pseu(io-code v(})f thé-BDM-R.’:II‘; MCPIS Shown below.

1 while (1)

2 do
3 /* Sending messages */
4 if (An initiated network send DMA has completed) or
5 (No network send DMA: was initiated)
6 then
7 if (An initiated network send DMA has completed)
8 then . ) . ‘
9 Put buffer back into free-send-buffer queue
10 q o
11
12 " /* Sending: To Network*/
13 . if (An initiated Host—LANai PCI DMA has completed)
14 ~ then
15 Start DM Aing the buffer out the network
16 fi
17 C
18 /* Sending: Host—LANai */
19 if (Host has queued a buffer to send)
20 then :
21 Initiate Host—LANai PCI DMA for the buffer.
22 ~ /* We are sure that there is no other ongoing
23 . . LANai—Host or Host—LANai PCI DMA */ . -
24 fi
27 /* Receiving: From network */
28 . .if (Message is waiting to be received from the network)
29 then
30 Initiate receive-DMA
31 /* Do not block until DMA finishes */
39 & _ _ |
33 o -
34 /* Receiving: Buffer management */
35 if (An initiated network receive DMA has completed)
36 then
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37 Queue the buffer in the received-buffers-queue

38 fi

39.

40 / * Recelvmg LANai—Host */ .

41 if (Host asks for a message with a specified TAG)

42 then .

43 Search received-buffers-queue for message with this tag
44 If found, initiate LANai—Host PCI DMA

45 /* We are sure that there is no other ongoing

46 LANai—Host or Host—LANai DMA */

47 i

48

49 if (An initiated LANai—+Host PCI DMA has completed)
50 then

51 Hand buffer to host

52 fi

53 done /* while */

De81gn Rationale: The main-loop of the BDM-RT MCP resembles that of
BDM-MCP to a large extent, malnly because only those portions that affected
the predictability of protocol processing and message latency were replaced from
BDM- MCP It must be noted at this point that the semantics of PCI DMA are
different for BDM-RT as dlscussed in the subsection 5 3.4. This allows us to make

an assumption that the DMA engine is not carrymg out a transfer when access

‘to the PCI bus is sought (see lines 21. and 44 in the pseudo-code). ThlS removes

two blocking statements from BDM. As timeliness is of essence to BDM-RT, the
blocking network receive DMA that existed for minimal latency in BDM has been
replaced by a non-blocking one. |

Effect on Performance: The replacement of the blocking receive DMA from
BDM (line 34 in BDM pseudo-code) increasés the latency of received messages
because LANai CPU activity has a negative effect on DMA bandwidth (Myricom

Inc. 1996). Non-blocking receive DMAs are particularly detrimental to short-
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message latencies, because the polling period :(tin‘le spent in a single Iﬂain-loop)
is of the same order (~6-8 usec) as the receive DMA latency. Other effects
of performance are examined below in association with the individual design

components that cause them.

6.2.2 Message receipt
6.2.2.1 BDM

In BDM, a call to BDM_Frame_recv() looks for a received message that has
already been transferred to the host. The BDM MCP‘ transfers all received
messages to the host as soon as they are received. A call to BDM_Frame_recv()
succeeds if there is at least one message in the “shadow” received-messages-queue
on the host.

Rationale: The rationale for this design was discussed in 5.2.3.1.

Received
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Figure 6.1: Comparison of Receive Semantics between BDM and BDM-RT

Effect on Predictability: As mentioned above, BDM-MCP transfers incoming

messages to host memory on a best-effort basis. The PCI bus, as a resource, lacks
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~any kind of management as there is no scheduling of PCI DMA transfers. This

adds to the unpredictability in message latency because of contention of the PCI
- bus both between Myrinet packets (outgoing vs. incoming) and between Myrinet
packets and other non-real-time PCI traffic. This design can also cause undesired
. priority inversion. For example, let us assume the host sends a high priority packet
by issuing a call to BDM_Frame_send(). Assume that a low-priority packet is
received just before this operation and is being DMA-ed to it location in host
memory. In this case the PCI bus becomes unavailable to the high-priority send-
packet until the low-priority receive-packet is fully transferred to the host. This
priority inversion is avoided in BDM-RT by scheduling DMA transfers during a

task’s alloted CPU time.

6.2.2.2 BDM-RT

- The receive function BDMRT Frame_recv() involves three steps:
e The host sets a LANai flag to i‘equest the MCP for:a meésage;

e The MCP looks in DLL (see section 5.5) for. a matching message and sets
another flag indicating the result. It then initiates a PCI DMA of the

matched message;

e The host function refﬁrns failure if not found. If ‘found, the host waits for

DMA transfer completion.

Ratjonale: The rationale for this design was discussed in 5.3.3.
Effect on Performance: The three main aspects of BDM-RT receive
semantics are as follows: (a) PCI DMA occurs only after a call to

BDMRT Frame_recv(), (b) The MCP initiates and finalizes DMA transfers, and
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(c) The BDMRT Frame.recv() function blocks the host CPU until the transfer is
complete.

By delaying the LANai-to-Host PCI DMA until a call to BDMRT Frame _recv()
is made, BDM-RT adopts a non-work-conserving approach. In general, this
approach reduces performance because of poténtial non usage of the PCI bus in
the presence of ready data. Message latency increases because of potential idle
time spent by the received packet in LANai buffers.

Latency degradation occurs because of the host polling over a DMA completion
flag that is set by the MCP. The host has to access the polled value across the
PCI bus and hence interferes with the ongoing transfer by contending for the PCI
bus. The LANai interface hardware architecture assigns higher access priority to
the host CPU as compared to the Host-LANai DMA engine (Myricom Inc. 1996) .
This worsens the impact of polling on PCI DMA latency. BDM-RT has however
been designed to minimize this negative effect by beginning the polling operation
only after a large fraction (say 90 percent) of the average DMA duration has
elapsed. Also, once pélling begins, the completion flag is examined not more than
once in 5 psec, to limit the number of accesses to the PCI bus. This decreases
the average number of accesses to about half the number in a tightly polled loop
(average read time is 2.5 usec).

The ‘majo; | performance degradation arises because. of “blocking DMA.”
Performing blocking DMA greatly degrades bandwidth, by decreasing the amount
of message-pipelining. Processor utilization is also reduced because useful
computation cannot.be overlapped with an ongoing DMA transfer. In the presence
of large amounts of contending PCI bus traffic from non-real-time Linux processes,

blocking DMA promises lower average latency than regular DMA by minimizing
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the effect of contention. However, in the absence of severe contention, a latency
degradation rather than enhancement is incurred because of the abovementioned

three-step receipt procedure.

6.2.3 Sender-side host to LANai transfer

6.2.3.1 BDM

BDM uses PCI DMA initiated by the MCP: for all Host-to-LANai DMA
transfers. Detection of DMA completion is also doﬁe by the MCP. When a call
to BDM _Frame_send() is made, the buffer is put into the re.ady-.to-send queue and
the function returns immediately. In its main—lpbp, BDM-MCP detects this buffer
and initiates a PCI DMA to transfer the détd to LANai buffers before sending it

out the network. The rationale for this design was presented in the BDM Design |

section in 5.2.4.
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Figure 6.2: Comparison of Send Semantics between BDM and BDM-RT

Effect on Predictability: This design is not suitable for predictable data transfer

between the host and LANai memory for reasons cited in the sub-section 5.2.4.
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Potential contention of PCI bus usage can occur from other best effort non-BDM

Linux processes that may be scheditled on the CPU during the PCI DMA transfer.
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- Figure 6.3: BDM Send Semantics: Contention with Linux for PCI bus

o Fivgure-6.3 illustrates the effect of such non-real-time PCI traffic on BDM traffic

-PCI DMA latency. The figure shows two"méséhgés of equal length sent by two tasks
51 and S2. For BDM we notice that the lzgten:ciesf L1 and L2 are higher and less

predictablé than their BDM counterparts L3 and L4. The bunpredictability in the
BDM-MCP main-loop discussed in 6.2.1.1 can aggravate the problem by adding

more uncertainty to the actual start time of the PCI DMA. This is shown by the

. duration D for BDM.
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6.2.3.2 BDM-RT

BDM-RT uses “blocking DMA” semantics which causes BDMRT Frame_send()
to hold the CPU for an empirically calculated average duration of PCI DMA. The
rationale was presented in the BDM-RT design section under 5.3.4

Effect on Performance: The main effect of “blocking DMA” is bandwidth
reduction because of wasted CPU time during the DMA transfer. For high-
performance applications, blocking communication calls reduce their ability to
overlap useful computation with communication. In the presence of heavy
extraneous non-real-time PCI traffic, the overall average latency actually improves

“because of a significantly lower jitter component.

6.2.4 Header information
6.2.4.1 BDM

The BDM packet header is described in Henley et al. (1997). Prominent header
fields are the route-information, message length, and message protocol type (level

of reliability). See Henley et al. (1997) for more information on BDM header fields.

6.2.4.2 BDM-RT

The BDM-RT packet header consists of a tag field in addition to those present
in a BDM packet hedder.
Rationale: The tag field enables BDM-RT to demultiplex received.messages
among various receiving faéks. The tag field was added to BDM-RT to avoid
pribrity invérsion of received messages by allovﬁng a high-priority receive to precede

a low-priority one even though the latter packet arrives at the LANai first. This
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also allows easier building of MPI/RT channels by usin'gﬁone tag to T’rep’fesent a
channel throughout an MPI/RT program.

- Effect on performance: In theory, the latency of BDM-RT increases because
of the increased length. of the header. However, the effect of an extra tag field
(1 byte) in the header is negligible compared‘to the actual latency of zero-byte

messages (= 50 usec).

6.2.5 = Sender-Side message delivery order

Both BDM and BDM-RT send messages in First-In-First-Out (FIFO) order. At
the receiver’s end, BDM _Frame._recv() returns messages in the order of their receipt
at the LANai, while BDMRT Frame_recv() returns the first received message with

a matching tag.

6.2.5.1 BDM

Ratiohale: FIFO queue processing generally involves the least queue processing
overhead Further these queues are 1mplemented as s1ngle-producer single-
consumer queues with the host library and BDM-MCP playing the roles of producer
and consumer and require no overhead for mutual exclusion.

Eﬁ'ect on Predlctablhty FIFO processing is inherently QoS—msensmve
However 1f a higher layer is capable of QoS based pnontxzmg of messages before
ha.ndmg them off to the MCP, QoS—sensmwty can be mtroduced At the recelvmg
end also restnctmg apphcatlons to receive messages in their order of arnval at
the LANax causes undes1rable prlorlty inversion. Building a de—multlplexmg layer

above BDM does not allev1ate the problem because pnonty 1nvers1on occurs in
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protocol processing, in our case - the LANai-to-host PCI DMA - done inside the
BDM layer.

6.2.5.2 BDM-RT

Rationale: At first glance, FIFO queuing appears inadequate for BDM-RT to
function as a QoS-sensitive messaging layer, and to avoid priority inversion (Mehra,
Indiresan, and Shin 1996) (Lee et al. 1996). However, on closer examination
FIFO delivery is seen to suffice based on the following reasoning: BDM-RT has
been designed to efficiently layer time-based MPI/RT channels. The MPI/RT
Commit() function (Kanevsky, Skjellum, and Watts 1997) will map each channel
into a PromisQoS RT task and TURTLE scheduler will order the execution of
send-side channels in a manner consistent with the channel’s QoS requirements.
In other words, channel protocol processing including host-to-LANai DMA on the
send side will be scheduled in the order of earliest delivery deadlines. The packets
then undergo minimal processing at the MCP before being sent out in FIFO order.
Thus messages received from a single node are always in prioritized order. However,
messages received from different source nodes can still suffer priority inversion if
the receive function can retrieve messages only in FIFO fashion. To solve this
problem, BDM-RT provides for a tag-based receive mechanism. .As long as a
message has been received at a node’s LANai buffers, it can be received immaterial
of its position in the receive queue..Best-effort tasks do not have explicit support
in this version of BDM-RT. In the presence of best-effort tasks using BDM-RT,
- one FIFO queue will not suffice.- One needs at least two separate queues in order to

mask interference from best-effort tasks and still continue to meet the deadlines of
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real-time tasks. At the same time, the adopted qu'eué processing strategy should
be fair to best-effort traffic and not starve it of link or CPU bandwidth.

Effect on Performance: At the sender’s side, there is no performance trade-
off compared to BDM because of the identical FIFO queuing of messages. Queue
processing complexity is ©(1). At the receiver’s side, the tag-based de-multiplexing
mechanism involves searching, adding, and deleting nodes in the linked list (DLL)
of received messages, which is ©(n). Alternately, if the linked list was organized
as a binary search tree, the order of complexity of queue manipulation would be
O(logyn). In our case, at most 8 buffers can be queued at the receiver’s end.
For N=8, the gain from a binary tree'is insignificant, specially compared to the
overall latency (= 50 usec) which is nearly two orders of magnitude greater than
worst-case linked list manipulation overhead (= 1 usec, based on measured LANai -

instruction execution speeds).

6.3 Summary .

Based on the analysis of BDM and BDM—RT design, we see that nearly all
components of BDM that optimize its performance are unsuitable for real-time
communication. The converse is also true - components of BDM-RT that enhance
its predictability involve performarnce compromises. In particular, the BDM-MCP
main-loop performs certain blockiiig opéfaﬁidns that decrease the predictability of
protocol processing delays. BDM lacks explicit ‘management of the PCI bus and
the Myrinet switch, leading to resource contention. Undesirable priority inversion
exists due to the FIFO receipt scheme. On the other hand BDM-RT achieves

“predictability at the cost of performance.
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CHAPTER VII
EXPERIMENTS, RESULTS, AND ANALYSIS

This chapter presents the experimental methodology and the results obtained
from these experiments. The aim of these experiments is to demonstrate the
validity of the hypothesis and to corroborate the analysis of design for BDM and
BDM-RT presented in chapter VI. The experiments chiefly compare the timeliness
and performance of BDM and BDM-RT for various message sizes and message-

passing scenarios. Most results are based on timing measurements using the global

clock described in 2.2.1.

7.1 Experiment setup

This section describes the;configuration in which experiments were performed.
It also points out the limitations, and estimates the accuracy, and overhead

involved in gathering performance metrics.

7.1.1 Hardware and software

All experiments were performed on a two-node Pentium Pro Myrinef cluster.
The host and network hardware specifications were also listed in 2.1. Software
specifications were listed in 2.1.1. The main reasons for limiting the experiment
platform to a two ndde, one Myrinet switch is the current state of development of

PromisQoS, and the global clock.
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7.1.2 Timers used

The clock synchronization module provides a 64-bit nano-second resolution
virtual clock on all slave nodes (see 2.2.1). This clock is based on the 64-bit nano-
second resolution APIC Time Stamp Counter (found on all Pentium chip-sets) of
the master node. Test programs use global time-stamps to compute end-to-end
metrics such as latency, bandwidth, and latency—jitters. _

Internal metrics such as PCI DMA ‘latencies, PCI DMA jitters, and MCP
processing overhead use the on-board LANai RTC (Myricom Inc. 1996) with a

resolution of 0.5 us. More resolution is desirable in future LANai hardware.

7.1.3 LANai storage limitation

Metrics such as PCI DMA latency and MCP processing overhead cannot be
gathered for long durations because of limited storage space on LANai SRAM. For
example, on a 1 MB board, aboﬁt 400 KB of frée space is available for metrics.
Assuming that each metric includes a 32-bit RTC time-stamp and a 32-bit integer
metric value (totaling to 8 bytes per set), we can record a maximum of 50,000
sets. Assuming a task with period 500 usec, this limits the recording duration
to 25 seconds. The simplest way to overcome this limitation without periodically
transferring out metric data from LANailmemory (which can potentially interfere

with the RT traffic) is to record only a subset of events. For instance, in the

- .measurement of LANai-to-Host DMA latencies, latency is recorded only if it

- exceeds a certain value, i.e the upper bound on latency for that message length.

This greatly reduces the amount of data that needs to be stored, specially if the

system meets its latency bounds most of the time.
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7.1.4 Metric overhead

Both the host and the LANai introduce processing overhead associated with
instrumentation for gathering performance metrics by both the host and the MCP.
The host gathers metrics on the number of PCI DMA transfers that exceeded
their latency bounds and the total number of PCI DMA transfers performed by a
program. Test programs also record global time-stamps on the host, for latency and
bandwidth calculation. Given the high speed of the Pentium processor (200MHz),
and low access times for the APIC TSC (30-50 ns) the instrumentation overhead is
negligible compared to the overall host protocol processing time. The MCP gathers
metrics such as individual PCI DMA latencies, polling duration of the MCP main-
loop, and individual network DMA latencies and stores them in statically allocated
LANai memory. A typical metric recording operation consists of recording a time-
stamp and a metric value at key points in the main-loops such as initiation and
completion of DMA transfers. The instrumentation overhead was estimated by
empirically measuring access times for the RT'C and LANai memory. It was found
experimentally that the MCP ‘spends between 3 and 5 percent of its time in a

main-loop in the instrumentation code. - - -

7.1.5 Accuracy and error bounds -

As pointed out earlier, all end-to-end time measurements are done using the
global clock. The global clock itself has an error bound of +4 usec in the worst
case. For latency of long messages ( > 500 bytes), this amounts to less than 5
percent error. For short messages, the error factor is rather high, but its effect is
reduced when averaged out over a long duration because of the typical “swinging”

behavior of clock synchronization error around both sides of the x-axis (see figure
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2.5). Individual error bounds for each performance metric are discussed in their
respective sections. .

- For PCI DMA statistics, the error bound on DMA latency is largely governed by
the time that elapsed between.the actual completion of a DMA and its detection by
the MCP. The MCP main-loop duration has an upper bound of 10-12 usec. This
error is unaccéptably high, specially because our interest is in measuring DMA
. latency jitters rather than latencies themselves. To reduce polling error, the MCP
- checks for DMA coihpletion at several places in the main-loop instead of just once.
- Using such a scheme, the measurement error is reduced to 3-4 usec in the worst

case (but at the same time adds to instrumentation overhead).

7.2 Latency measurements

Latency is measured by recording the global time-stamp- at the sender’s
node just before calling BDM(RT)_Frame send().and at the receiver’s nodeé just
after BDM(RT) Frame_recv() returns. One-way latency is then computed by
subtracting the sender’s time-stamp. from-thé receiver’s time-stamp. -The set-up
used for this experiment is as follows: An RT task S (sender) runs on node A while
an RT task R (receiver) runs on node B, both with a period of 1 ms. Both processes
specify a deadline’ value that is marginally greater than the compute time, thus
forcing the scheduler to allot CPU time éxactly between their specified start-time
‘and deadline, every period. Additionally, the sender’s start-time is staggered by a
~delay of 50 psec with respect to the receiver. This is done to ensure that messages
never arrive at node B before R is scheduled. Such a situation would induce error

into latency measurements. The latency was averaged over 1000 messages.
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7.2.1 Expected results

Both BDM and BDM-RT are expected to have comparable but relatively
large zero—byte latency because of PCI DMA overheéd; BDM-RT is expected
to have higher latency. This is mainly because of the additional overhead in BDM-
RT Frame_recv() owed to (a) the tag-based receive mechanism and (b) performing
the receive side PCI DMA only after a call to BDM-RT Frame_recv() is issued.
Tag based de-multiplexing involves the host writing tag information into LANai
memory, setting a flag, and examining the flag for status of the received message.
All three of these operations are performed by the host across the PCI bus (see
section 6.2.2). There is extra overhead in the MCP also because of link-list traversal
to identify the tagged message. In BDM, we are able to redli'ée this overhead to
just one access across the PCI bus to check if at least one message has been fully
received into host memory. However, this occurs at the cost of (a) having no tag-
based de-multiplexing at the receiver’s node, and (b) highebr latency jitter because
of the absence PCI traffic scheduling. |

A second cause of latency increase is because of the difference in the network
receive DMA (rDMA) semantics between BDM and BDM-RT. For best latency,
when a message arrives BDM-MCP DMAs the entire message and spins until
DMA completion. In BDM-RT, the MCP initiates the DMA and goes off into its
main-loop to service other potential data transfers. The effect of this non-blocking
receive DMA in BDM-RT is specially high on very short messages as the polling

interval for DMA completion ( 4 to 6 usec ) becomes comparable to DMA latencies.
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'7.2.2 Actual results

Figure 7.1 compares the message latency for short messages (length < 512
- bytes). BDM has a zero byte latency of 32 usec, while the same is as high as 54
psec for BDM-RT. This latency overhead in BDM-RT was explained above.

| Latency Comparison for Short Messages
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Figure 7.1: Latency for short messages

rises with increase in mesSagé sizé, whereas it remains | more or l'ess constant in
BDM-RT. The increasing behavior seen in the case of BDM is typical 6f 1atency
curves, and needs no explanation. The reason for BDM-RT’s flat graph is two-
fold. Firstly, BDM-RT is a real-time messaging layer, so it always budgets no less

than the worst case latency of messages rounded off to the next higher multiple

l
|
" Another observation in the latency graphs is that the latency of BDM messages
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of 5 pusec. Secondly, the receive function minimizes the negative effect of polling .

for DMA completion by polling in steps of 5 psec (described in section 6.2.2.2).
Because of the above reasons, the rahge of latencies for messages between 0-512

bytes mapé to a single latency.
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Figure 7.2: Latency for long messages

Figure 7.2 corﬁpa.res the latencies bf messages for a longer range of message
lengths. Because both BDM and BDM-RT use PCI DMA for transfers between
host a.nd LANai memory, their latency graphs look nearly identical over the range
of message len_gt_h_s..‘BDM-RT has an extra latency of about 10 usec, because of

the same overheads described in the previous subsection.
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7.3 Bandwidth measurements

| Bandwidt.h.: iS ﬁieasured by Streéming xiiéssages from one hd(i:e(énd receiving it
at the other in »é tight loop. The éet;ﬁp used for this éxi)érimént is as follows: An
RT task S (sender) runs on node A while an RT task R (receiver) runs on node
B, both with a period as large as 10 ms. The period is limited to 10ms to avoid
CPU contention from the Linux task, which is guaranteed 1lms of every 10ms.
Task S specifies a CPU Time of 4ms, and task R specifies 4.2 ms to account for
message latency. Both processes specify a deadline value that is marginally greater
than their compute time, thus forcing the scheduler to allot CPU time exactly
between their specified start-time and deadline, every peﬁod. Both tasks ask for
a large chunk of CPU time - approximately 5 ms every period. During the alloted
CPU time, the sender sends messages in a tight loop consisting of the function
pair BDM(RT)_F‘rame_rnalloc() and BDM(RT)_Frain'e_send(). Meanwhile, the
receiver receives messages in a tight loop consisting of calls to the function
pair BDM(RT) Frame.recv() and BDM(RT) Frame free(). The BDM unreliable
protocol (Henley et al. 1997) is used for bandwidth measurement because MPI/RT
Channels will be implemented using this protocol. Using this protocol in a tight
sending loop can cause receiver-buffer overflows if the receiver is slower than the
sender, leading to message loss. To get an accurate measure of bandwidth, message
loss should be avoided by tuning the sender’s rate to that of the receiver. This
involves finding the difference in sender and receiver rates, and adding a suitable
duration of inactivity in the sender’s loop. Tuning the senderé rate exactly to
the receiver’s rate is iterative and rather timé—consuming to achieve bré,étically.

As an alternative, unreliable bandwidth was measured as the receiver’s rate in
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the presence of lost messages which do not count for bandwidth calculation. The

measured bandwidth was averaged over 1000 messages.

7.3.1 Expected results

BDM is expected to have significantly better b;ﬁdwidth than BDM-RT because
of “blocking” PCI DMA transfers in BDM-RT. In BDM, the BDM Frame_send()
call is non-blocking thus allowing the user to queue up PCI DMA transfers while
one is in progress. In BDM-RT, BDMRT Framesend() returns only after the
holding on to the CPU until the estimated PCI t_)MA latency elapses. At the
receiver’s side, BDM _Frame recv() returns a pointer to a message that has already
been transferred to host memory, while BDMRT Frame_recv() initiates and waits

on the completion of DMA between LANai and host memory.

7.3.2 Actual results

Figure 7.3 shows the bandwidth of BDM and BDM-RT. The theoretical PCI
bandwidth for 32-bit, 33MHz PCI is 132 MBytes/sec. BDM achieves about 88
percent of this bandwidth at 7800 bytes. As expected, BDM-RT has a lower
. bandwidth owed to the “blocking” PCI DMA. .

7.4 Latency jitter

'Quality of Service for MPI/RT Channels consists of 'prbiIiding guaranteed
bandwidth and a latency bound for channel messages. In this experiment we
measure end-to-end message latency jitter for BDM and BDM-RT. The latency
program described in section 7.2 is used for this experiment as well. Disk activity

is shut off during this experiment to avoid PCI bus contention from the disk driver.
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Figure 7.3: Bandwidth

7 41 Expected results

The latency jitter for BDM is expected to be significantly larger than that for
BDM-RT. The chief source of latency jitter applicable to this experiment is PCI
- bus contention from non—BDM(RT) processes. BDM-RT is designed to minimize
the effect of PCI bus contention, by disallowing extraneous PCI transfer initiations
during a BDM-RT PCI transfer (see Chapter 6). In the absence of disk activity,
BDM-RT is expected to provide a hard bound on the latency jitter, while BDM

cannot.
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7.4.2 Actual results

Figures 7.4 and 75 show the end~to-end latencies of BDM and BDM-RT
for 4KB sized messages .These ﬁgur»es also show the latency incurred in two
intermediate stages of mesSage transfer: the host-to-LANai and LANai-to-host
PCI DMA latencies. For BDM, it is clear that the unpredictability in host-to-
LANai DMA latency is the chief fa,ctor 1nﬂuenc1ng the overall latency jitter. This

jitter component is nearly neghglble in the case of BDM-RT BDM-RT can be seen
to be better suited for QoS provision than BDM.
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BDM_RT: End~to-End Latency
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7.5 ‘Effect of external traffic

The effect of other non-BDM(RT) tasks contending with BDM(RT) tasks for
the PCI bus is measured by intfodﬁcing synthetic ethernet traffic. The latency
program is used for this experiment as well. The sending and receiving nodes are

ping-ed by a third node with 8000 byte packets every 1 second.

7.5.1 Expected results

We expect to see clear spikes in PCI DMA latency for BDM, and minimal or

no effect for BDM-RT, for the reasons cited in the previous section.
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7.5.2 Actual results

Figure 7.6 shows the result of artificially induced PCI contention on BDM
and BDM-RT message latencies. As expected, BDM suffers latency jitters while
BDM-RT is nearly unaffected.

Eftect of Ethemet tratfic on Latency
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Figure 7.6: Effect of non-real-time ethernet traffic

7.6 Summary of results

All experiments yielded expected results and confirm the hypothesis. The QoS
experiments showed that BDM-RT outperforms BDM in terms of latency jitter
and immunity to external PCI trafic. BDM is seen to be unsuitable for real-
time communication because of its inability to meet the fundamental requirement

of predictable message passing. Experiments on performance metrics showed
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that BDM-RT has lower bandWid’th and higher latency compared to BDM. In
summary, BDM is unsuitable for real-time. communication, and t_ha.t BDM-RT
requires performance tradeoffs to achieve predictability. These results corroborate
the analysis of the design differences between BDM and BDM-RT from the previous

chapter.
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CHAPTER VIII
CONCLUSIONS

"This thesis hypothesized that a fundamental dichotomy exists between the
design of low-level real-time and high-performance messaging layers. The
hypothesis was scoped over the design:of a real-time messagiﬁg f.l—a'yer with
performance requirements, over Myrinet clusters of PCs. This thesis is
applicablé in general to networks of COTS computers characterized by high-speed
communication, vlow—latency cut-through switching, and a programmable network
interface.

The motivation for this work was the requirement for a real-time messaging
layer with reasonably high performance for the development of a time-based
Channel implementation of the MPI/RT middleware with QoS support. Myrinet |
was chosen as the network because of its high speed and low bit-error rates. The
absence of time-based real-time messaging layers on Myrinet and limited past
research on worm-hole routed networks provided the motivation to déSign and
implement BDM-RT - a real-timne messaging layér.

"'The basic requirements of real-time communication were reviewed in chapter
3. The goéls'and design choices for high—performance messaging layers on Myrinet
" were presented in chapter 4. It was seen that BDM shares common design
goals with other popular Myrinet messaging layers such as FM, GM, BIP, U-Net,
and VMMC. It was also noted that BDM and all other cited high-performance
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messaging layers contained few or no mechanisms to address the requirements of
real-time communication previously presented in chapter 3.

Chapter 5 presented the detailed design of BDM and BDM-RT and discussed
the rationale behind their.design. BDM-RT is the first known hard real-time

messaging layer on Myrinet. BDM-RT can provided bounded end-to-end latency

by adopting several techniques that improve its predictability. BDM-RT isolates

the shared PCI bus from best-effort traffic by introducing the concept of “blocking
P_CI DMA”. BDM-RT supports high-quality transmission of clock messages to
facilitate the implementation of a fine grain (+4 usec) global clock with acceptably

low synchronization oveljheads. The BDM-RT MCP offers bounded response time

'and bounded protocol-processing time. Combined with the ﬁne,grain: clock, this

ensures conflict-free end-to-end message transfer.

~ Compared to FM-QoS, the only other known implementation of a QoS based

_messaging layer on Myrinet, BDM-RT was shown to be superior in the following

aspects. BDM-RT can provide end-to-end guarantees rather than just LANai-
to-LANai guarantees ,PPOYided by FM-QOS.‘ The overhead for BDM-RT clock

synchronization is an order of magnitude less than for the self-synchronizing

schedules of FM-QoS. The BDM-RT clock synchronization algorithm also appears

to scale better for mult1ple—sw1tch networks

The validity of the hypothesis was demonstrated in chapter 6 by first pointing

, . out that perfo_r_mance-predlctab;l_1_ty trade-offs are inevitable, given a set of

hardware architectural constraints. The design of various components of BDM
and BDM-RT were compared and contrasted. BDM’s chosen design was shown
to have an undesirable effect on its predictability. BDM lacks provisions for

explicit management of resources such as the PCI bus and Myrinet switch. Traffic
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isolation is absent in BDM, and protocol processing is neither time-bound nor free
of undesired priority inversion. Similarly, the goal of predictability in BDM-RT
was shown to impact its performance negatively. Mechanisms in BDM-RT such as
“blocking PCI DMA” for resource isolation, bounded-time protocol processing in
the MCP, and tag-based receiving to avoid priority inversion were showri to lower
its performance.

This analysis was corroborated in Chapter 7 with experimental verification of
performance and QoS parameters of BDM and BDM-RT. The actual results from
these experiments matched closely with the expected results. BDM-RT shows
significantly better ability to meet QoS requirements by providing bounded jitter
on latency and isolation from external non-real-time ethernet traffic. Additionally,
BDM-RT was seen to have lower bandwidth and higher latency as compared to
BDM.

Based on the presented analysis and experimental verification with BDM and
BDM-RT, and given the degree of similarity in the design and goals of various high
performance messaging layers such as FM, GM, AM, and BDM, we conclude that

the hypothesis has been verified to be true.

8.1 Future work

It would be interesting to study the applicability‘ of this thesis work
to other high-speed networking technologies such as GigaNet (GigaNet, Inc.
2000), ServerNet (Horst and Garcia 1997), and ATM. In networks such as
GigaNet and ServerNet processing at the network interface is implemented in
hardware or firmware. On Mpyrinet, BDM-RT implements predictable end-to-

end communication by providing bounded response time software (MCP) at the
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network interface. This ensures that link traffic scheduled by a global clock at the
host will not encounter resource conflicts at the network medium or at the network
switches. A study of the predictability of protocol processing at the network
interface and the predictability of switch fall-through times for other high-speed

networking technologies is the first step towards applying this thesis to them.
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APPENDIX A
HARDWARE MECHANISMS FOR PREDICTABILITY
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Below are some hardware and firmware solutions to achieve predictable PCI
latency and bandwidth in the presence of bus contention from other non-real-time

traffic.

A.1 PCI register initialization

The Penpheral Component Interconnect (PCI) 2. O Standard (Solarl and Willse
‘1‘998) provides a set of conﬁguratlon registers that are either initialized by
- configuration software at boot-up time, or have a hardwired value. Some of the
PCI conﬁguration registers can be used to mitigate the effects of bus contention
on the PCI bus access time and PCI DMA latency for Myrinet traffic as described

~ below. As a background, PCI registers of significance to this discussion are listed

below.

Min_Gnt Min_Gnt is a read-only register applicable only to bus master devices.
A non-zero value indicates, in multiples of 250ns, how long the master would
like to retain PCI bus ownership every transaction, for best performance. A
zero value indicates that the device has no such requirement on ownership

- time-slice.

Max_Lat Max_Lat is a read-only reglster that specifies how often, in multlples of

| 250ms, a device needs to gain access to the PCI bus.

Master Latency Timer The Master Latency Timer (MLT) prevents bus
masters from monopolizing the bus. The MLT value defines the minimum
amount of time, in PCI clock ticks, the bus master is allowed to retain
ownership of the bus once a transaction starts. The MLT value is permitted
to be hardwired only if the bus master is incapable of performing more than

two data phases per transaction (Solari and Willse 1998). Otherwise, MLT
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should be a read/write régister. Max_Lat and Min_Gnt values are normally

used by boot-up software to determirie the MLT value for each device.

Assigning suitable values for MLT can improve the real-time behavior of
Myrinet traffic at the cost of sacrificing optimal performance of other devices.
For mstance by usmg a hlgh value of MLT for itself, the Mynnet dev1ce can
prevent losing ownershlp of the bus for that many PCI clock ticks. In combmatlon
with thlS, a MLT low value for all other PCI devices will reduce bus acquisition
1atency for the MYfinet device. The feasibility of ‘the above solution is affected
by the i)tesence of devices in the real world that use a hardwired value for their
MLT register, although this violates the PCI Standard. This. makes it impossible

to change the MLT register value for such devices.

A.2 Customizing PCI arbitration

- The PCI 2.0 Standard does not define the arbitration logic to arbitrate access
requests from different bus masters sharing a PCI bus. It is up to the PCI
chip-set manufacturer to implement any fair arbitration scheme that does not
cause a deadlock. The PCI arbiter 1mplements a simple round—robln scheme in
‘most commerc1al chlp-sets Consequently, a solutlon to improve predlctablhty of
-Myrinet DMA transfers is to use prlonty-based arbltratlon using highest priority
for the Myrinet DMA bus-master. This option was not chosen because it demands
- specialized hardware, i.e. a customized PCI arbiter or a PCI chip-set with a
programmable arbiter. This conflicts with one of the goals of PromisQoS - that of

being based on a COTS platform.
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A.3 Dual PCI bus

A possible solution to avoiding bus contention between real-time and non-
real-time traffic is to use a dual-PCI bus configuration, with a dedicated bus for
real-time Myrinet traffic. This is acclaimed by researchers in real-time systems as
the most effective and .simple hardware solution in the presence of contention from
non real-time traffic. This option was also discarded because commercial desk-tops

do not have such a configuration.
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APPENDIX B
BDM AND BDM-RT API
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A list of relevant functions belonging to the BDM and BDM-RT Application

Programmers Interface (API) are listed below for easy reference.

B.1 BDM API Functions

. BDM_Frame_malloc Allocates a send-buffer from a buffer queue.
BDM _Frame_send Sends a message.
BDM _Frame_recv Returns the first received message.

BDM _Frame_free Frees the receive-buffer into a buffer queue.

B.2 BDM-RT API Functions

BDMRT Frame_malloc Allocates a send-buffer from a buffer queue.
BDMRT Frame_send Sends a message.

BDMRT Frame_recv Returns the first received message with a matéhing tag.
BDMRT Frame._free Frees the receive-buffer into a buffer queue. \
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This report describes a real-time message layer over Myrinet networks. It is
intended to provide communication support with QoS to upper level layers like Mi’I/RT.
In order to minimize development efforts and utilize an existing communication layer’s
features, GM has been chosen as the basis of this project. GM is a Myrinet
communication layer provided by the vendor of Myrinet gigabits networks — Myricom
Inc. It is a powerful communication layer with a lot of features like automatic network
mapping. In order to provide real-time communication, a resource reservation scheme is
employed for real-time purpose. Corresponding changes are made to the memory
management and link scheduling of GM for this purpose. The resulting system is

composed of a modified GM system and a real-time memory management layer.
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Tests are also conducted to verify the correctness of the system and the real-time
performance. Conclusions are reached from the test results that the real-time traffic and

non-real-time  traffic  are  integrated successfully in  the ° system.
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CHAPTER

INTRODUCTION

1.1 Background

The QoS (Quality of Service) requirements of appliCations require that
middleware provide guaranteed service. MPI/RT (Message Passing Interface/Real-Time)
is a message-passing interface that is intended to provide guarantees, fo;' QoS for data
communication functions (Cui et al. 1997). Itisa real-time; analogue of the well-lmowh
message passing standard - MPI. However middlgwareg_ like MPI/RT _cannot provide
guaranteed service by itself. It must rely on support from the underlying operating
system and communication layers. Some research has been done in this area to address
this problem. Examples include FM-QoS at UIUC and BDM-RTk 1n Mississippi State
University. The objective of this project is to develop a real-time communication layer
over Myrinet (a gigabits network). The resulting message layer should be able to provide

guaranteed service to upper-level sofiware such as MPI/RT.

1.2 Motivation
Unpredictability in a data transmission is caused by contention over shared

resources. Contention will cause unpredictable waiting time. There are different ways to
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solve the contention over shared resources. For exampie, FM-QoS uses a non-conflicting
global schedule to avoid contention, to provide predictable service to the upper layer
(Song and Chien 1999). But basically, all these ways use resource reservation schemes
as a basic rule. A resource reservation scheme is composed of two parts: an admission
control layer and a scheduler (Rajkumar et al. 1998). A detailed introducti;)n to the
resource reservation schemes wiil be given in next chapter. Since we already have a
time-based scheduler working under RT-Linux, the objective of this project is to provide
a low level communication layer to cooperate with the existing time-based scheduler in

order to provide guaranteed service.

1.3 Organization

The organization of this report is as follows: Chapter 2 gives a literature review
and some background knowledge. Chapter 3 give§ the system architecture of this:proj ect.
Chapter 4 gives a detailed ‘analysis of GM. Implementation details are presented in
Chapter 5. Finally, in Chapter 6, test results and results analysis are breééntéd. Chapter 7

presents conclusions and future work.
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CHAPTER II

PROBLEM ANALYSIS AND CURRENT SOLUTION

In the chapter, the problem needing to be solved in order to provide real-time
communication will be analyzed. The current solutions to solve this problem will also be
given.

2.1 Problem analysis _

The fundamental issue in delivering quality-of-service (QoS) in network
communication is resource management (Chien and Kim 1997). As mentioned in chapter
1, unpredictability in a data transmission is caused by contention over shared resources.
Resource sharing will result in unpredictable waiting time. In order to provide
predictable service to applications, the underlying operating system and communication
sub-layer must employ a certain kind of mechanism to regulate the usage of such shared
resources. Shared resources involved in a data transmission include CPU (protocol
processing, packetization, etc), host memory, and network link bandwidth (Rajkumar et
al. 1998). The task of any real-time communication layer is to solve the contention over
these shared resources and make the whole transmission predictable. A lot of research
has been done to solve this problem. Essentially, all these research efforts employ

resource reservation schemes to address the contention.
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2.2 Resource reservation scheme
A resource reservation scheme is designed to enforce the rule that before using

the shared resources, a user must make a reservation for them first. A reservation is an
indicator of what time and durations resource is needed (Rajkumar et al. 1998).
According to the reservation request, the system will make the decision whether to accept
this request (if the system can meet the requested QoS requirements) or decline this
request (if ‘the requested QoS requirements cannot be satisfied). Once the request is
granted, the user is guaranteed to get the required services. Normally, there are two key
components in resource reservation schemes: one is admission control (this is where the
decision is made), another is the scheduler (this is the part to enforce the contract made
by the admission control layer to user applications). The foIlowing figure shows the

system layout in a resource reservation system.

Real-Time Application

Admission Time based Communication
Control scheduler layer

_—
——

Network

Figure 2.1 System layout of a resource reservation system

The resource reservation scheme has been employed in many circumstances that

need guarantees on QoS. In this section, two examples are given. One is RSVP
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(ReSource reserVation Protocol). Another is RT-MACH from Carnegic Mellon

University.

2.3 RSVYP

2.3.1 RSVP introduction
The resource reservation protocol is an internet protocol intended to provide QoS

guarantees to end users (Stallings 1997). Network protocols like TCP/IP, UDP/IP, do not
address any QoS requirements. When it comes to the applications that are QoS sensitive,
like audio/video transmission, users will often get unacceptable transmission quality.
RSVP (ReSource reserVation Protocol) is proposed to improve delivered quality of
service under such circumstances. “It is a network control protocol that will allow
Internet applications to obtain special qualities-of-service (QoS's) for their data flows”
(Cisco Systems Inc. 1999). The essence of RSVP is to employ a resource reservation
scheme in order to provide guaranteed service to user applications. RSVP is a trénsport
layer protocol in the OSI seven-layer model. It can be used with both IPv4 and IPv6
(Cisco Systems Inc. 1999). The startup procedure of an RSVP session includes two
phases (Stallings, 1997). First, the seﬁder will send an RSVP path message to the
destination. All the intermediate routers will keep a record of the route (including the

previous router and next router). When the receiver receives this path message, it will

send out a resource reservation request all the way back to sender. All the intermediate

routers will allocate resources (include link bandwidth, buffers, CPU time) accbrding to

the flow specification m this request if the request can be satisfied. Otherwise, the RSVP

program returns an error indication to the application that originated the request.
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2.3.2 RSVP components
RSVP is composed of the following functional components. Each of these has a

certain task. The first one is called the RSVP daemon which is the main module of
RSVP. It is responsible for asking the "policy control" and "édmission control" for their
permission to set up the reservation. If permission is granted, the RSVP daemon sets
parameters in a "packet classifier" and "packet scheduler” in order to obtain the desired

QoS (Cisco Systems Inc. 1999).

Policy control is used for authority checking. It will check if the requester is
allowed to make reservations and what kind of QoS he or she may reserve.

Admission control is used to evaluate the QoS requirement in the reservation
request. It will check the current state of the node (host or router) to see if the node has
sufficient resources to meet the requested QoS requirement.

The packet classifier is responsible for determining the route and QoS class for
each incoming data packet.

The packet scheduler is responsible for séheduling queued packets according to
their QoS parameters. This is the part responsible for achieving the promised QoS. This

can be implemented by prioritizing queues of flows, as necessary.

The system layout of RSVP can be described by following figure.

RsVP |
Daemon

: Policy
Control
— AN A dmission :
Application S Control
Packet - Packet .
Data DR  Classifier Scheduler  |iesi

Figure 2.2 System layout of RSVP (Cisco Systems Inc. 1999)
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2.3.3 RSYP current status
RSVP was ongmally conceived by researchers at the Umver51ty of Southern

Califomia Information Sciences Institute and Xérox Palo Alto Researéh Center (Cisco
' Systems Inc 1999). The Internet Eiigineering Task Force (IETF) is now wbrking toward
standardlzation through an RSVP working group (Cisco System Inc. 1999). At present,
many vendors of operating systems and routers are incorporating RSVP and 1ntegrated
services into their products for near-future availability. The potential for the use of
RSVP .is enormous, and it is growing as more and more interactive multimedia
applications are presented for use over the Internet or organizationél intranet (Stallings

1997).

2.4 RT-MACH at Carnegie Melon University

2.4.1. Introduction to RT_Mach
RT MACH is a real-time operating system developed at Carnegie Mellon

University. It is an extension to the Mach operating system (Rajkumar et al. 1998). It
was developed under the circumstance that the general time-sharing operating system
cannot satisfy multimedia applications’ (such as video and audio) timing requirements. It
is a micro kernel based operating system which means only the most basic functions are
put into the kernel, all the other functions are put outside the kemel as servers.
RT_MACH supports multiple scheduling policies, such as rate monotonic scheduling and
earliest deadline first scheduling. The resource reservation abstraction in RT MACH is
an implementation of a resource reservation scheme.
2.4.2 Reservation abstraction in RT MACH

In reservation abstraction, the system considers each shared resources (physical or

logical) such as CPU, memory and semaphore as a kind of resource (Rajkumar et al.
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1998). When a real-time task requests a resource and the requeSt is 'granted a reservation

of this resource is saved for this task The system guarantees the avallabrhty of the

resource when the task wants to use it. ThlS kmd of scheduling is called resource- centric

scheduhng (Chen Rajkumar and Mercer 1996) RT " MACH describes each task by five
parameters start time, end time, penod deadlme and computatron time (Chen RaJkumar
and Mercer 1996) The timing requlrement of each task is to use requested resource for
computatlon time before deadhne in each period. Each guaranteed task will get its
reservation and not influence other tasks.
2.5 Conclusion

In this chapter, we analyzed the problem that needs to be solved in order to
provide guaranteed service. We also analyzed a solution to this problem — the resource

reservation scheme. Two implementations of resource reservation scheme (RSVP and

RT_MACH) have been given.

154




CHAPTER II1

SYSTEM ARCHITECTURE

In this chapter, the system architecture used in this project is given. We first give

an overview of the system. Then a detailed analysis of each component will be given.

3.1 Overview of the system
Figure 3.1 shows an overview of system architecture.

User Applications (User Mode)

Real-Time 1 -+ Real-Time .
Application 2 Application N

Real-Time -
Application 1

Linux

(Kernel Mode)

“Turtle Scheduler .. Communication

Subsystem
s, 4

Myrinet

Figure 3.1 System Architecture

3.2 Software Architgptuf§ »

3.2.1 RT_Linux o
RT Linux is chosen as the operating system. Linux is an increasingly popular

free Unix-clone operatirig system (Atlas et al. 1998). Because it is free and all the source

code is available, some research has been done on Linux to make it into a real-
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time operating system that can support hard real-time application. RT Linux is
developed under such background. It was implemented at New Mexico Tech. The basic
idea is to change Linux into a real-time OS without changing the kernel too much
(Barabanov and Yodaiken 1996). -Standard Linux cannot support hard real-time
applications because: |

e The Linux kernel is non-preemptive. When the user makes a system call
and it goes into the kerﬁel mode, Lmux w11110ck the scheduling until the
system call ﬁnishéd. At this time, a réady task with higher pﬁoﬁty cannot
preempt the lower priority task that is running the system call. - This may
cause unpredictable latency for a real time task.

* In the critical section, Linux kernel always uses cli to disable interrupts to
keep the consistency of criticalv‘re;sources. Like scheduling lock, this is
also a problgﬂi for real-fime tasks. What RT_Linux doeé is to add a real-
time kernel over Linux and make Linux ‘as a real-time task with the
lowest 'pﬁbrity. Linw; is not aware of fhe existence of a RT kernel. The

following figure shows the structure of RT_Linux.

(User Mode) Linux Process 1 : Linux Process n
Linux Kernel RT Process ’
(Kernel Mode) f f o
Real Time Kernel Scheduﬁﬂ :
Software Interrupt : e
? Hardware Interrunt

Figure 3.2 RT_Linux structure
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From th¢ Figure '3‘.2, we can see that all real time tasks‘ and real time kernel are
running in the kernel mode. Only the Linux processes are running in user mode.
Another bigb"ﬁchalnge of RT Linux comparing to Linux is that all the sti and cli
instructions in the kernel are replaced by soft sti and cli. What the soft sti and cli do is
- mot directly set or clear the status register in the CPU, instead they oﬁ_ly set or clear the
value of a soft flag. In the interrupt emulator, it will check this soft flag to see if it should
pass current interrupt to Linux kernel or not. All the real-time interrupts are responded to
immediately, thus avoiding unpredictable interrupt latency in Linux. There are also some
drawbacks of RT_Linux. First, putting the real time task into the kernel is sometimes
dangerous. There is no spatial protection between the kernel and the application. A logic
error in the real time application may cause the whole system to crash. Second, the Linux
kernel system primitives are not reentrant in nature and RT Linux does not change this
point. To keep system consistencies the real time task cannot use any system services
provide by Linux kernel. Third, two scheduling policies are implemented in current
RT_Linux. .One is a fixed priority based preemptive scheduler, another is earliest
deadline first (EDF) scheduler. Both of these do not provide temporal protection among
real time tasks. A time-misbehaving real-time task can easily influence the run time
behavior of other normal real time tasks. The last ,o-ne vis not # problem fbr RT Linux.

. Because the user can implement his or her own schedulers and add it to the kernel easily.
. The Turtle scheduler is such a scheduler implemented on RT_Linux (Apte et al. i999).
73.2.2 Turtle scheduler
Turtle scheduler is a real-time scheduler on RT Linux developed in the HPC

group of Mississippi State University. It adopted the reservation abstraction in
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scheduling policy. The scheduling algorithm it uses is critical deadline (deadline-
computation) first algorithm (Apte et al. 1999). It is similar to Earliest Deadline First
- algorithm.” Each péﬁodic‘ hard real time task is represented by five parameters: C;, P;, D;
, 8i, E; . They represent computation time, period, deadline, start time and end time of a
periodic hard real time task respectively. The scheduler always chooses the task with the
earliest critical stat time to fun. The deadline driven scheduling algorithm is optimum in
the sense that if a set of tasks can be scheduled by any algorithm, it can be scheduled by
the deadline driven scheduling algorithm‘ (Liu and Layland 1973). The scheduler only |
guarantees the requested time of a real time task. The scheduler keeps track of the run
“time of a real time task.  When a real time task overruns its requested time and another
reéal time task is ready to run, the scheduler will get the overrun task out of the CPU and
“let the other réady real time tasks run. In the real-time field, this is called a reservation
~ abstraction. Just as the virtual memory mechanism will provide spatial protection ~among
processes, the reservation abstraction can provide temporal protection among real time
applications, which means a runtime misbehaving task will never influence other normal
real-time tasks runtime behavior.
3.23 Comfﬁuniéation layer
~ The task of the communication layer is to cooperate with the real-time scheduler
‘i’ ofder to provide guaranteed service to communication tasks. The objective of this
"p‘ro'jeét is to provide" ‘such a communication layer in order to achieve i‘eal-tirne
communication. A defailed analysis of the communication layer will be given in the next

" chapter.
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3.3 Hardware architecture
A two-node Myrinet cluster is used in the experiments. Both of hosts are Pentium

Pro 200. Myrinet is used as network test bed. A detailed introduction to Myrinet is given
below. | |
3.3.1 Myrinet

Moyrinet is a high performance gigabit per second network. It can provide full
duplex data transmission rate at 1.28 Gigabit/second (Boden et al. 1997). It uses cut-
through switch to provide low latency data transmission. Myrinet is also really reliable.
It exhibits a very low bit-error rate, less than one bit error per day in a large network, and
is highly robust with respect to host, switch, and cable faults (Myricom Inc. 1999). A
Myrinet network is composed of three parts: Myrinet network interface cards, cables and
switches.

A Myrinet interface card is a programmable card. It has an embedded processor
(LANai) on it. The control program running on this embedded processor is to handle
direct interaction with host and network and is called the MCP (Myrinet Control
Program). The user can implement his or her own communication layer over Myrinet by
writing a customized Myrinet Control Program. There are three DMA engines on the
LANai (Myricom Inc. 2000). The first one is responsible for the data transmission
between host and LANai. The second one is responsible for data transmission from
LANai to network. The third is responsible for data transmission from network to

LANai. The diagram of a Myrinet network interface card is shown in Figure 3.3.
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Figure 3.3 LANai 7 Network Interface Card (Myricom Inc. 2000)
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CHAPTER IV

GM ANALYSIS

Instead of building a whole new communication layer, GM.(Glenn’s Messaging)
was chosen as the basis for this project. GM is composed of an MCP, a host library and a
device driver. In this chapter, a detailed analysis of GM will be given.

4.1 Introduction to GM

GM is an open source, high performance message layer over Myrinet. GM's
design objectives included low computational overhead, portability, low latency, and
high bandwidth (Myricom Inc. 2000). It is provided by the vendor of Myrinet, Myricom
Inc. There are several features in GM that make us choose it as our basis.

e Open source (So we can modify)

e Low latency

e Automatically maps network.

The GM system includes a driver, Myrinet interface firmware, a network mapping
program and the GM AP], library, and header files. By choosing GM as the basis for this
project, it is possible to utilize a lot of features provided by GM, like network-mapping
etc. In this way, we can get a real-time communication layer with minimum extra

development effort.
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4.2 GM analysis
The problem we are facing is that GM is a high performance message layer, not a

real-time one. By analyzing the memory management and link scheduling in GM, we
found out the memory management and link scheduling between real-time traffic and

non-real-time traffic must be separated. The following graph shows the data flow in GM.

Host Step 4: DMA
Side Step 1: DMA message message from
from host buffer to LANai buffer to
L. ANai buffer host memory
Network Step 2: D Step 3: DMA
message from £
Interface : message from
LANai buffer to twork
Card K network to
networ LANai buffer
Network

Figure 4.1 Data flow in GM

From this diagram, one can see that the data transmission in GM is finished via
four DMA transfers. On the sender side, the sender needs to DMA data from host buffer

to LANai buffer first. Then the MCP on sender side will DMA these data from LANai
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buffer to network. On thé receiver side, the MCP will DMA data from network to LANai
bqffer, then ﬁnally,:D.MA these data from the LANai1 buffer to Ehost buffer.
4.2.1 GM memory management

- As the graph shows, for data transfer between host and LANai, GM currently only
supports DMA transfer. Befogg sending out or recéiving any data, GM process must get
the memory both in the host and on the LANai.

Host side memory management

Before sending and receiving data from the LANai, GM process must get a
DMAable (contiguous and non-pageable) memory from kemel. Gm_dma_malloc is used
for this purpose. What it does is to use kmalloc() for kernel port and use malloc() for
user port to get DMAable memory. ThlS is not appropriate for real-time use, since it will

cause unpredictable waiting time when there is not enough memory available.

LANai buffer management

The MCP in GM only has two send buffers and two receiver buffers (Myricom
Inc. 2000). When there is a send arriving from host or a receiver arriving from network,
and there is no available buffer, the MCP will put the send and receive into a waiting
queue, until the buffer becomes available. As with the memory management on host side,

this will also cause unpredictable waiting time, and thus is not appropriate for real-time

purposes.

4.2.2 Link scheduling in GM
The GM communication system provides reliable, ordered delivery between

communication endpoints called "ports," with two levels of priority (Myricom Inc. 2000).

Before sending or receiving data from the Myrinet network, the user must open a port
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using gm_open(). Port umber, destination riode number and priority tinifluély identify a
sub-port. The send queue in GM is a circular list of connections with pending sends.
Each connection maintains a list of sub—ports that have sends pending over that
connection. Each sub-port maintains a list of send tokens describing packets that have
data to be sent, or have acknowledgements pending." For faimness, in GM after each send,
the control program rotates the sub-port queue for the connection, and then rotates the
connection queue (Myricom Inc. 2000). This is a kind of time-sharing scheduling policy.
It is not QoS sensitive, thus not appropriate for real-time purpose.

4.2.3 Flow control and error control in GM 7
GM uses the "go back N" protocol with NACKs in flow control and error control

(Myricom Inc. 2000). "Go back N" is the preferred protocol when software overhead,
rather than network capacity, is the nétwork's limiting factor, because it wastes network
bandwidth during error recovery to reduce software overhead relative to other pr;)tocols
(Tanenbaum 1996). This is unnecessary for real-time traffic, since retransmission in real-

time traffic is most often riot desired.  This is also the reason why hard real-time traffic

always requires high reliability from underlyirig network. *
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CHAPTER V-

IMPLEMENTATION

After analyzing GM, the conclusion was reached that the memory management
and link scheduling of real-time traffic and non real-time traffic must be separated. In
this chapter, implementation details of real-time traffic memory management and link

scheduling are given.

‘5.1 Memory management of real-time traffic

5.1.1 Host side memory '
The solution is to build a RT module over the GM device driver. When this RT

module is loaded, it will pre-allocate a certain amount of memory from the kernel. Real-
time task’s will get and release memory by makiﬁg réque_sts to this RT }chzljgle. After
obtaining ‘"memory from kernel, thjs RT module will organize thJS piece of memory into a
circular buffer. |
5.1.2 The Lanai side memory

We use shadow buffers on LANai. Once a communication task gets a buffer in
host or in LANai, it also gets the corresponding buffer in LANai or host. DMA transfers

data between corresponding buffers in LANai and host.
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5.1.3 Implementation detail
On the host side, there are two options to pre-allocate buffer from kernel. One is

to use kmalloc (size, GFP_DMA) to get non-pageable, contiguous memory from kernel.
Another is to use memory map function provided by Linux kernel to map high address
memory into kernel address space.  In this case, we choose the later option. This is based
on the concern that: memory obtained by using kmalloc (s1ze GFP DMA) belongs to the
low 16MB memory Memory in thls range is very premous If too much DMAable
memory is allocated, other kmallocs in the system may fail. By usmg vremap(), we can
overcome this drawback. .

* On the LANai side, send and receive buffers are allocated by eraﬁc :éu"ray. A static
array of size RT_ MAXFRAME*(RT _MAXSEND+RT MAXRECYV) is added into the

GM data structure.

5 2 Link scheduling of real-time traffic

For link scheduling between real-time traffic and non real-tlme trafﬁc priority-

based scheduling' is used. The new system diagram is shoyVn in Flgure 5.1. Real-time
events always have higher pri'Ority'i;over jn‘oﬁireal-time events. In this’j'Way,;:we can
guarantee that real-time traffic will always be scheduled ahead of non-real-’ume traffic.
For link scheduling between real-time traffic, First-In-First-Out (FIFO):scheduling is
ﬁsed. This is based on the assuiriptioh that the ;irrivirrgor’de’rof real-time packets is

V e.lready scheduled by the schediiler on the host side.
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Network
Interface
Card

" Network

~ Non RT traffic
—--— RT traffic

.. Figure 5.1 Diagram of new system

i In GM, the system status is expressed by ISR&IMR|GM_STATE (Myricom Inc.
l . 2000). The hardware information, such as whether the send interface is ready or not, is
- expressed by the hardware register ISR. It is maintained by the LANai hardware. IMR is
- the interrupt mask register. Other information, such as whether there is ‘a packet pending
- to be sent, lS expressed by a 32 bit global variable GM_STATE that is set and cleared by
~-software (Myricom Inc. 2000). The dispatch of GM can be finished within two
instructions. Two tables are set to achieve this goal. The first one is called the event

index table. It is responsible for converting current status (ISR&IMR|GM_STATE) to
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the corresponding event index. The second table is called the handler table. It is
responsible for converting the event index to the corresponding handler address. The

dispatch procedure is expressed by Figure 5.2.

&Handler 0

ISR&IMR|GM_STATE 8 —» - Handler 0

&Handler 1 9 Handler 1

&Handler N 9 Handler N

N7

Handler Table

Event Index Table © *
Figure 5.2 Dispatch tables in GM

‘In order to add real-time ability to GM, another 8 events are added into system.
They are as ' follows: START_RT_SEND_EVENT, FINISH_RT_SEND EVENT,

START_RT_SDMA_EVENT,FINISH_RT SDMA_EVENT,START RT RECV EVE

NT,FINISH_RT_RECV_EVENT,START RT'RDMA_EVENT,FINISH RT RDMA_E

- VENT. Correspondingly, another 8 status bits are added into- system. They are as

follows: RT SDMAING, RT_SDMA_PENDING, - RT_SENDING,
RT_SEND_PENDING, RT RDMAING, RT RDMA_PENDING, RT RECEIVING,

RT_RECV_PENDING. In the original GM system, only 15 bits are used to express
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currently system status. The size of event index fable is 32K byte. Each time we add a
status bit, the event index table will double in size. Since 8 status bits are added, the size
of event index table will be 8 MB. This is not realistic for an embedded processor since
the memory of an embedded system is always precious. In our case, the maximum
SRAM for a LANai processor is 4MB. Because of the limitation of memory, for real-
time events, we use if statement instead of table dispatching. Performance is sacrificed

for memory usage.
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CHAPTER VI

TEST RESULTS AND RESULTS ANALYSIS

6.1 Predictability Tests

6.1.1 Test Metric
In order to test the predictability of the system, latency variance (jitter) is used as

the test metric. It is an important metric to measure the performance of a real-time

system.

6.1.2 Test method v .
A 32-bit timer on LANai board is used to get timestamps. The resolution of this

RTC (Real-Time Clock) is 0.5 s .

Figure 6.1 shows the complete test procedure.

Host A Host B
e} ~
(] o
= 2
ov) ov)
= =]
= =4
o w»
2 g
< o
[oo) jos)
=1 =
= =]

Figure 6.1 Test Diagram
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Round trip latency is tested because of two concems. The first one is that
" currently there is no global clock synchronization support in the MCP. The second one is
that if one uses global clock synchronization, the accuracy of test results will heavily
depend on the accuracy of global clock synchronization.
The test plah is as follows. There are four real-time tasks running on two nodes.
The send task on node A will send a message to host B. When the receive task on host B
receives this message, it will ‘i;ass the message to a send task on host B. Then the send
task on host B will send this message all the way back to host A ‘During this procedure,
one gets eight timestamps. By computing these timestamps using the following formﬁla,
~ we can get the round trip latency.

Round-Trip Latency=(time8-timel)-(time3-time2)-(time5 -time4)-(time7-time6)

Table 6.1 Detail description of timestamps

Time | Description

Time 1 | The time when send task on node A send out the message

Time 2 | The time when LANai on node B gets the message

Time 3 | The time when receive task on node B gets the message

Time 4 | The time when receive task on node B send this message to send task on node B

Time 5 | The time when send task on node B starts to send back the message

Time 6 | The time when LANai on node A gets the sending back message

Time 7 | The time when receive task on node A gets the sending back message

Time 8 | The time when receive task on node A finish computation
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6:1.3 Tests to be conducted
Test 1: There is no real-time traffic in the system. Latency jitter of the "original" GM

traffic is tested. By increasing the number of communication tasks, the impact of shared
resource contention on latency variance can be observed.
Test 2: »”I"p‘erve is oply real-time traffic in the system. Latency jitter of real-time traffic is
tested.
Test 3: Both real-time traffic and non real-time traffic is in the system. Latency jitter of
real-time traffic is tested to see the impact of non real-time traffic on real-time traffic.
6.1.4 Ef{pécted results | |

The results of test 1 (jitter of non-real-time traffic) should be hjgh, since there is
. o mechanism used to guarantee the predictability of message transfer.

The results of test 2 (jitter of RT traffic) should be small. It should be much better
compared to the jitter of non-real-time traffic.

: The results of test 3 (jitter of RT traffic with :the preéenbe o% non-real-time traffic)

should be close to the results of test 2, siﬂce idealiy real-time trafﬁc should not be

influenced by non-real-time traffic.
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6.2 Test results

6.2.1 Test 1

Round Trip Lalency (Nanoseconds)

Round Trip Latency {Nanoseconds)

Round Trip Latency of Single non-RT-traffic
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Figure 6.2 Round Trip Latency of Single non-RT traffic
Round Trip Latency of Multiple non- RT-traffic
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Figure 6.3 Round Trip Latency of Multiple non-RT traffic
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6.2.2 Test 2

Round Trip Latency (Periods=10s)
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Figure 6.4 Round Trip Latency of RT traffic with no non-RT traffic

6.2.3 Test 3
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Figure 6.5 Round Trip Latency of RT traffic with single non-RT traffic
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Figure 6.6 Latency jitter of real-time traffic with six non-RT traffic |

Table 6.2 Average round-trip latency and jitter of tests

Average Round-Trip Latency Jitter
(Microsecond) (Microsecond)
Single non-RT traffic | 974.65 108.53
Six non-RT traffic 16488.472865423 2147410.962
RT traffic 17
RT traffic with single 322
‘| non-RT traffic ' '
RT traffic with six non- 296
RT traffic
6.3 Results Analysis

Figure 6.2 shows the round trip latency for single non-real-time traffic. From this

figure, one can see that there is a long round trip latency épp'éélring irregularly. The
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biggest jitter observed so far is around 90 nlicreseconds. This also matches the expected
result. Since there is no mechahlsm used in the original GM to prov1de guaranteed
| serv1ces latency J1tter is expected to be high. Figure 6.3 shows the round trip latency for
six non-real-tlme» traffic: From thls ﬁgure we can see the 1mpact of contention over
shared resources on round tnp latency In this expenment six GM communication peers
. are set up on two nodes F1gure 6 3 is the round trip latency of one peer. The biggest
| Jltter in th1s case is more than 2 seconds By comparing F1gure 6.3 with Figure 6.2, we
can draw the conclusion that the round trip latency of non-real-time traffic will increase
when the workload in network increases. Figure 6.4 shows the round trip latency of
single real-time trafﬁc The blggest jitter observed so far is only around 20
nncroseconds This also matches the expected results very well. The mechanisms used
in the system for real-time traffic do have an effect. Figure 6.5 shows the round trip
| latency of single real-time traffic with the presence of one non-real-time eemmuhication
'peer.v Fr'em’this figure, we can see that both the round trip latency and latency jitter
ihcrease in the presence of non-real-time peers. There are two reasons for this increase.
The- first one is that transactions on each state machine are non-preemptive. Dispatch
occurs only after transactions. The second is that DMA operations on LANei are non-
preempti{re. One cannot initiate a DMA operation until the current- DMA operation
finishes. These two reasons explain why both round trip latency and latency jitter
increase when there is non-real-time traffic in the system. Figure 6.6 shows the round
trip latency of real-tixhe traffic with the existence of six non-real-time communication
peers. By compaxjng Figure 6.5 and 6.6, one can see that both round trip latency and

latency jitter stay stable. They will not increase when the number of non-real-time
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communication peer increases. Average found—trip latency increases. Since the
possibility that a RT traffic waits for an on-gding non-RT traffic increases, average
round-trip latency will increase. Since the increase of worst case round-trip latency is
due to the granularity of pregmption, the worst case round-trip latency when there are
multiple non-_I_(T- traffic should be the same as th_é worst case round-trip latency when
there is only one non-RT traffic in the system. This explains why jitter stays stable in
Figure 6.5 and Figure 6.6. Actual results match expected results. Table 6.2 shows the

average round trip latency and jitter of these tests..
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CHAPTER VII

CONCLUSIONS AND FUTURE WORK

The objective of this project is providing a real-time communication layer to
cooperate with the existing scheduler to achieve real-time communication. In order to
minimize the development efforts and utilize the existing communication layer’s features,
GM was chosen as the basis of this project. The problem needing to be solved in this
project was how to provide real-time communication while still keeping the functionality
of original GM. Current research in this area is studied in chapter two. The goal is
achieved by separating memory management and link scheduling of real-time traffic and
non-real-time traffic in this project. System architecture, system analysis and
implementation details are given in chapter three, four and five respectively. Tests were
also conducted to verify the functional correctness and real-time performance of the
system. The complete results of tests conducted are presented and analyzed in Chapter
six. The actual results match well with the expected results.

From the results of tests we have conducted, the following conclusions can be
reached:

e  We successfully integrated real-time traffic and non real-time traffic. The system
functions correctly. Both real-time communication and non-real-time

communication can run in the system simultaneously.
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System can cooperate with the existing scheduler (Turtle) to provide guaranteed
service for real-time applications.

Although the goal of this project was achieved, the resulting system is not a

complete system yet. Following is the work need to be done in the future.

The current MCP does not support global clock synchronization. In order to
support time-based scheduling, global clock synchronization suppOrt should be
added in the future system. |

The final system should include admission control. This is a very iniportant part

in resource reservation scheme.
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1  Summary

The objective for our work in this contract was to enhance the Maruti operating
system In several ways, in order to provide Mississippi State University with a
platform upon which their work on the Real-Time Message Passing Interface
could be developed. Maruti is a hard real-time operating system that has been
in development at the University of Maryland for the past few years. For this
particular contract, our goals were to enhance Maruti in two major and one
minor areas. The two major areas are the high accuracy in the dispatching
of real-time tasks and the dynamic time-based scheduling scheme. The minor
area 1s in the development of a graphical tool to aid in the configuration and
integration of hard real-time applications.

2 Real-Time Dispatching

In this area of research, our goals were to find ways to dispatch real-time tasks
as close to their scheduled dispatch time as possible. This problem is difficult
due to the relative unpredictability of various aspects in a computing system
such as pipelining, cache hit/miss, etc. More specifically, we look at the accu-
racy of two approaches to dispatch real-time tasks. We start by studying the
traditional approach of using count-down timers and discuss the factors affect-
ing its precision. Next, we study a new approach for the deployment of the
count-down timers that promises a higher degree of dispatching precision for
real-time tasks.

The typical approach for the deployment of count-down timers is to preset
the timer with a specific value representing the number of clock ticks required
to elapse before a timer interrupt is generated. Till that time, the CPU can
be used to run non real-time tasks. On the arrival of the timer interrupt, the
CPU launches an Interrupt Service Routine (ISR) which handles the context
switching from the current task to the real-time task.

In our implementation, we make use of the count-down timer present in
the Advanced Programmable Interrupt Controller (APIC) which is part of the
Intel@© P6 Architecture. The P6 architecture is implemented in all Pentium
Pro(© and newer Intel microprocessors. In these systems, the system bus typi-
cally runs at a clock cycle of 66.667 MHz. The CPU multiplies the bus clock to
synthesis its internal CPU clock.

The APIC timer has a 32-bit register that is decremented at each bus clock
tick. For example, the counter is decremented every 15 nanoseconds when driven
by a 66-MHz bus clock. The timer can be programmed to operate in one of two
modes; “periodic”, or “one-shot”. In the periodic mode, the timer generates an
indefinite number of interrupts periodically as determined by the initial value
written in its register. Whereas in the one-shot mode, the timer generates only
one interrupt.
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Due to the limited width of the countdown register, the frequency of the
bus clock, as well as other implementation-specific considerations, the longest
period to program the timer may be limited to a maximum of M seconds. A
typical value of Mis 1.431 seconds for a 300 MHz Pentium II driven by a 66 MHz
bus clock. If a longer period, say 7T, is needed, the timer may be programmed
in periodic mode for L%J‘iterations of length M seconds each, followed by a
one-shot iteration of length (7" modulo M) seconds.

QOur analysis of the single interrupt approach has suggested that it is pos-
sible to reduce the amount of variability in the dispatching time through the
absorption of the cache-miss effect. Pre-loading the CPU’s level-1 cache with the
required data and instructions has shown to significantly reduce the variability
in the dispatching time. The technique that we use applies a double-interrupt
approach to pre-load the data and instructions of that portion of the interrupt
service routine responsible for the final dispatching procedures.

As with the single interrupt approach discussed above, the APIC timer may
be programmed to generate few periodic interrupts, denoted by APIC,, ---,
APIC5. A semi-final interrupt, denoted by APICY, is generated at ¢, — 7 to
pre-load the level-1 cache with the data and instructions required for the final
dispatching steps. Fundamentally, APIC; touches all the memory paragraphs
containing data and instructions used at the final dispatching steps. In addition,
APIC, prepares the timer to generate a final interrupt at time ¢, — § and
immediately switches the context into a dummy idle task, called “APIC idle“.
The idle task is carefully engineered to preserve the contents of the level-1 cache,
thereby eliminating the side-effects of the non real-time task that are evident
in the single interrupt approach. The final interrupt, APICy, performs the
context switching back into the kernel, which in turn dispatches the real-time
task. The values of 7 and é are empirically determined to accommodate the
context-switching transitions 2, 3 and 4 and still minimize the average value of
ETTTask

Appendix A contains excerpts from a paper providing a more detailed de-
scription of the research and results from the work described in this section.

3 Parametric Scheduling

A new design for the Maruti scheduling scheme has been developed to enhance
the system task schedulability, and broaden the range of task types that can be
scheduled by the system in a timely manner. The following is a description of
the modules of the scheduling model, their scheme of execution, and information
passing:

Off-line scheduler The off-line module accepts an ordered set of tasks along
with their timing requirements such as ready time, deadline, period jitters,
and relative timing constraints among the different tasks. It uses this
information to generate a dynamic calendar.




Dynamic calendar The dynamic calendar contains information about the
task instances and their timing dependencies in the form of functions
whose parameters are values generated at run-time, such as internal sys-
tem states, external system physical state, or previous task instances ac-
tual execution times. The parametric functions produce the minimum
and maximum starting times for the different task instances as their out-
put. The calendar also include a pointer to the first task instance to be
executed.

On-line Dispatcher This module executes as part of the operating system
kernel. It is initiated after an invocation request for the application is
made. It starts by loading the dynamic calendar generated by the off-line
module and uses the pointer in the dynamic calendar to dispatch the first
task for execution. The on-line module remains active at run-time, filling
in the values of the functions’ parameters by values generated at run-time.
It uses the times generated by these function to start the execution of the
task instances according to their original timing constraints. The execu-
tion times of the different tasks are used as parameters for the functions of
the parametric functions as well as a feedback for the off-line component,
to be used as estimates for tasks execution times.

Using the new dynamic time-based scheduling scheme, we can schedule both
periodic and aperiodic tasks. Tasks can execute in any general pattern other
than strict periodic, for instance the system can schedule periodic tasks with
variable inter-instance periods.

The dynamic time-based scheduling model can also support linear relative
timing constraints that frequently rise in real-time applications. Linear relative
timing constraints generally take the from e; — ey < t, where €1, ey are timing
events such as the start or finish of a task execution, and t it a time period.

The benefits of the scheduling scheme are:
o Ability to add aperiodic tasks at run-time.
o Ability to schedule more general tasks.

e Variation of the run-time behavior depending on values generated by exe-
cuting tasks, or system state to change the parametric functions calculated
by the off-line component at pre-runtime.

¢ Using parametric function makes use of the slack time to run non-real-time
tasks, or to finish the schedule as early as feasible.

The proposed scheduling scheme also gives some possibilities of fault tol-
erance by allowing the operating system kernel to gain control, or update the
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different functions parameters in case of failure. Some of the fault tolerance
abilities that are supported by this scheme are:

¢ Substitution of minimum values for parameters in case of failure of task
instances generating the parameter value to keep the feasible total sched-
ule.

¢ Using the maximum execution time for the task instances to generate a
time interrupt, should the task instance execute more than the max time
allowed for it.

Appendix B contains excerpts from a paper providing a more detailed de-
scription of the research and results from the work described in this section.

4 MAGIC Tool

The MAGIC (Maruti Application Graphical Integration and Configuration)
graphical development environment pulls together various aspects of system de-
velopment, including compilation, configuration, scheduling, and analysis, and
debugging in an integrated GUI framework.

MAGIC is designed to support various phases of the application develop-
ment process. It accepts descriptions of tasks, which may be program modules.
These modules are used as building blocks for the application. Magic supports
a graphical manipulation of these tasks to establish their functional, timing and
commuunication relationships. A framework for analyzing the resource usage is
created which is used by the scheduler to generate the calendars for the applica-
tion. The run time executable is created from the object code and the calendar.
This executable can be run within MAGIC for debugging, including the anal-
ysis of temporal properties through temporal debugging. Once debugged, the
executable generated by MAGIC can be used in the production Maruti-based
designs. MAGIC has analysis tools during all phases of the development.

Following is a list of features for MAGIC:

e Graphical view of the application structure. Each component type
and its role in the application are immediately evident in a graphical
display of the topology. Figure 1 shows an example of such display.

¢ Graphical view of the resources of the system. Information about
system resources available for use by the application can be graphically
displayed in MAGIC, and back-end tools may be used to ascertain schedu-
lability of the application.

e Hierarchical grouping of components. As a graphical representation
of a large application may become very complex and unwieldy, MAGIC
supports hierarchical grouping of components into blocks, and information
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Figure 1: Screen Display of MAGIC

hiding in the display. For example, we may show only the interactions of
a block with the outside world and not the structure of the block itself.
Display filters facilitate viewing a selected part of the topology.

¢ Multiple back-end analysis tools. MAGIC supports incorporation of
various analysis tools working from the common representation of the ap-
plication structure and providing results which are available in the graph-
ical format. Temporal analysis techniques will be added to the current
repertoire of MAGIC.

We have finished a prototype implementation of MAGIC, which currently

supports: the creation of tasks, threads, and jobs, the hooking up of commu-
nication channels, the transparent replication of tasks for fault-tolerance, and
generation of Maruti executable. Continuing and ongoing works will incorpo-
rate the remaining features listed above into the common graphical framework

of MAGIC.
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A Dispatching Real-Time Tasks: A High-Precision

Approach

In this chapter, we study the accuracy of two approaches to dispatch real-time
tasks. We start by presenting the traditional approach of using count-down
timers and discuss the factors affecting its precision. Next, we introduce a new
approach for the deployment of the count-down timers that promises a higher
degree of dispatching precision. For both approaches, we also accommodate the
scheduling of non real-time tasks utilizing the CPU slack time.

A.1 The Single-Interrupt Approach

The typical approach for the deployment of count-down timers is to preset the
timer with a specific value representing the number of clock ticks required to
elapse before a timer interrupt is generated. Till that time, the CPU can be
used to run non real-time tasks. On the arrival of the timer interrupt, the
CPU launches an Interrupt Service Routine (ISR) which handles the context
switching from the current task to the real-time task.

In our implementation, we make use of the count-down timer present in
the Advanced Programmable Interrupt Controller (APIC) which is part of the
Intel@© P6 Architecture. The P6 architecture is implemented in all Pentium
Pro© and newer Intel microprocessors. In these systems, the system bus typi-
cally runs at a clock cycle of 66.667 MHz'. The CPU multiplies the bus clock
to synthesis its internal CPU clock. For example, to run the CPU at a 300-MHz
clock, the bus clock is multiplied by a factor of 4.5 to generate the desired CPU
clock frequency.

The APIC timer has a 32-bit register that is decremented at each bus clock
tick. For example, the counter is decremented every 15 nanoseconds when driven
by a 66-MHz bus clock. The timer can be programmed to operate in one of two
modes; “periodic”, or “one-shot”. In the periodic mode, the timer generates an
indefinite number of interrupts periodically as determined by the initial value
written in its register. Whereas in the one-shot mode, the timer generates only
one interrupt.

Due to the limited width of the countdown register, the frequency of the bus
clock, as well as other implementation-specific considerations, the longest period
to program the timer may be limited to a maximum of M seconds. A typical
value of M? is 1.431 seconds for a 300 MHz Pentium II driven by a 66 MHz
bus clock. If a longer period, say T, is needed, the timer may be programmed
in periodic mode for I_%J iterations of length M seconds each, followed by a
one-shot iteration of length (7' modulo M) seconds.

1Faster bus clocks can now reach 100 MHz
2Please, refer to equation 1 for details on the derivation of M.
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Figure 2: Using a single APIC timer interrupt to dispatch real-time tasks

This technique is further illustrated in figure 2. In this figure, which is not
drawn to scale, we depict the time-line of the kernel, the non real-time and the
real-time tasks. At time ¢o the real-time kernel sets up the APIC timer and its

v ISR to dispatch a real-time task at timet,. The timer is first operated in periodic
mode for several iterations denoted by APIC,, ---, APIC;. Finally, a one-shot
interrupt APICy is generated at time t, — 7. The value of 7 is empirically
determined to accommodate the time needed to perform the context switching
back to the kernel, and from there to the real-time task. The kernel typically
performs some management steps before the real-time task is actually started.
A lower bound on the interval ¢, — t, is mandated by the amount of processing
needed to set up the timer and perform the context switching transitions 1, 2,
and 3.

A.2  Evaluation of the Single-Interrupt Approach

The single-interrupt approach is implemented on a Pentium II 300 MHz platform
driven by a 66 MHz system bus clock with 64 MB of installed RAM. Evaluation

189




of this approach proceeds as follows:

- The APIC timer is programmed so that a real-time task is to be started
at time t,.

- The CPU context is switched to some non real-time task.

- The time instance t; at which the kernel is about to dispatch the real-time
task is recorded . The dispatching error as seen by the kernel, denoted by
ETTkernel, 18 defined to be t; - .

- The time instance t, at which the real-time task 1s about to execute its
first instruction is recorded. The dispatching error as seen by the real-time
task itself, denoted by erriyqx 1s defined to be t - ¢,.

The values of both errgerner and erryqs; are monitored as the requested target
time t, is varied from few seconds down to few hundreds of nanoseconds. The
non real-time task running in the background implements a recursive function
that generates the Fibbonacci series and store the results in a global data array.
This selection increases the probability that the non real-time task will almost
flush the contents of the processor’s level-1 caches, both data and instruction
caches, before the real-time task is dispatched. The results of a 4167-reading
experiment are depicted in figure 3. This figure shows both errierner, which is
the lower plot with the right-hand-side vertical axis, and erryysi, which is the
upper plot with the left-hand-side axis, versus the relative target time t, - #
in units of CPU clock cycles® It should be noted that when the experiment is
repeated for the same set of ¢, values, the same results are indeed repeatable.
An inspection of figure 3 reveals the following:

o There is a lower bound on the value of ¢, - ) mandated by the CPU time
needed to execute the context switching transitions 1, 2, and 3 that are
shown in figure 2. On our test platform, this lower bound was imperically
found to be 666 CPU cycles ( = 2.22 pseconds ).

® errperne varies within a range of 39 CPU cycles.
® erriask varies within a range of 65 CPU cycles.

e The similarity between the two curves suggests that the variability in
errigsk 18 a direct consequence of the variability in errgerne;, with the
exception of very few instances. In fact, analysis of the difference erri i
- ePTiernel Shows that it behaves almost like a constant. This difference
has a very small standard deviation equal to 0.6 CPU cycles.

30n a 300MHz system, 1 CPU clock cycle = & bus clock cycles = 3% nanoseconds
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¢ The increments in the values of both errierne; and errygsk are of the order
of the main memory access cycle. This observation leads to the conclusion
that the absence of data and/or instructions from the processor’s level 1
cache is the main reason behind the variations in the dispatching time of
the real-time task.
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Figure 3: Dispatching time accuracy using single APIC interrupt

A.3 The Double-Interrupt Approach

The analysis of the single interrupt approach provided in section A.2 suggests
that it is possible to reduce the amount of variability in the dispatching time
through the absorption of the cache-miss effect. Pre-loading the CPU’s level-1
cache with the required data and instructions has shown to significantly reduce
the variability in the dispatching time. The technique that we use applies a
double-interrupt approach to pre-load the data and instructions of that portion
of the interrupt service routine responsible for the final dispatching procedures.
Figure 4 illustrates this technique.

As with the single interrupt approach discussed in section A.1, the APIC
timer may be programmed to generate few periodic interrupts, denoted by
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Figure 4: Using two APIC interrupts to dispatch real-time tasks

APICy, -+, APICy. A semi-final interrupt, denoted by APIC, is generated
at t, — 7 to pre-load the level-1 cache with the data and instructions required
for the final dispatching steps. Fundamentally, APIC; touches all the mem-
ory paragraphs? containing data and instructions used at the final dispatching
steps. In addition, APIC) prepares the timer to generate a final interrupt at
time ¢, — 6 and immediately switches the context into a dummy idle task, called
“APIC idle“ in figure 4. The idle task is carefully engineered to preserve the
contents of the level-1 cache, thereby eliminating the side-effects of the non real-
time task that are evident in the single interrupt approach. The final interrupt,
APICy, performs the context switching back into the kernel, which in turn dis-
patches the real-time task. The values of r and § are empirically determined
to accommodate the context-switching transitions 2, 3 and 4 and still minimize
the average value of errrgq; '

*a memory paragraph is 32-byte long

192




A.4 Implementation of The Double-Interrupt Approach

The implementation of the double-interrupt approach involves two main com-
ponents; namely

- a set-up routine to schedule an event at a specific time instance in the
future, and

- the interrupt service routine (ISR) responding to the interrupts generated
by the APIC timer.

The set-up routine is illustrated in figure 5. This routines receives three inputs:
1. The target time at which the event is to be dispatched
2. A pointer to the routine which implements the event

3. A pointer to a list of parameters to be passed to this specific instance of
the event

The target time must not be sooner than a minimum threshold which is em-

pirically determined to be 1200 CPU cycles. As it is mentioned in section A.1,
the number of required periodic shots, if any, is F%J . The value of M is

mandated by the computational details of the implementation and is given by:

232

= 1
M 10 x CPU frequency seconds (1)

The total number of APIC interrupts, denoted by “cntDwn”, equals 2 + number
of periodic shots. The remaining time to event dispatching after all periodic
shots have occurred, denoted by “cycles”, is given by (¢, — #,) mod M. Again,
the value of “cycles” has to be more than the same threshold imposed on (tr —
o). Finally, the value of “cntDwn” determines the programming mode of the
APIC timer; either “one-shot” or “periodic” mode. In the periodic mode, the
APIC timer is set up to generate multiple interrupts M seconds apart.

Next, the interrupt service routine (ISR) for the APIC timer is shown in
figure 6. Each time an interrupt is received from the APIC timer, the “cntDwn”
counter is decremented. As long as “cntDwn” is still greater than 2, the APIC
timer continues to operate in periodic mode. The moment “cntDwn” becomes
2, a one-shot interrupt is scheduled r ticks before the target time {.. When
this interrupt is received, “entDwn” becomes 1, and the last interrupt is now
scheduled é ticks before the target time t,.. At this moment, the context is
switched to the APIC Idle thread. As the last interrupt arrives, indicated by
“entDwn” becoming zero, the context is switched to the kernel in preparation
for dispatching the real-time event.
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A.5 Evaluation of the Double-Interrupt Approach

The performance of the double-interrupt approach is evaluated using an exper-
iment identical to that used for the single-interrupt approach in section A.2,
with the same non real-time task in the background. The observed values of
€PTrernel and erryask are plotted in figure 7.
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Figure 7: Accuracy of dispatching time using double APIC interrupts

An analysis of this figure reveals the following:

¢ The lower bound on the value of ¢, - ty is 1200 CPU cycles (=4uSec).
® €rTkerne; varies within a range of 4 CPU cycles.

® erriqsr varies within a range of 19 CPU cycles.

The lower bounds for 7 and é are empirically found to be 1125 and 490 CPU
cycles, respectively®. Further reduction in these values, especially in the value
of 7, resulted in erroneous kernel behavior.

50n our test platform, these are equivalent to 5.06 and 1.63 pseconds, respectively
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A.6 Performance Comparison

Kernel Error Task Error
Measure Single Double % Single Double %
Interrupt Interrupts Improve || Interrupt Interrupts Improve
Minimum -161 -130 19 -38 -7 82
Maximum -122 -126 3 27 12 56
Range 39 4 90 65 19 71
Average -143.9 -128.3 11 -7.9 -2.6 67
StdDev 4.5 1.0 77 4.6 2.5 46
Table 1: Statistical comparison of erryerner and errygsk
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[ Single Interrupt 0 2 1 220 | 1994 | 11ad | 711 53 40 2 o
|BDoubte Interrupts | © o ) ) 0 0 ) 871 | 4349 0 )

Value of Kernet Error

Figure 8: Frequency histogram of the errg rne

The task dispatching approaches presented in the previous sections provide
two levels of temporal accuracy at two cost levels. Table 1 provides a side-by-side
comparison of the single-interrupt and the double-interrupt approaches. The
numbers indicate that the single interrupt dispatching mechanism results in a
higher degree of uncertainty compared to the double-interrupt mechanism. The
value of errierner has demonstrated a 90%-reduction in its variability range and
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a T7%-reduction in its standard deviation when the double-interrupt technique is
applied instead of the single-interrupt technique. Similarly, the value of erryq
has shown 71% and 46% improvements in both statistics, respectively.

Figures 8 and 9 provide frequency histograms for errierner and errigsy,
respectively. These figures further illustrate the contribution of the double-
interrupt dispatching approach in reducing the variability in the dispatching
time.

On the other side, the increased accuracy has increased the overhead from
666 CPU cycles (2.22 pseconds) to 1200 CPU cycles (4 pseconds). We believe
that for accuracy demanding hard real-time tasks, this overhead is a reasonable
price to pay for the increased temporal accuracy.

A.7 Conclusion

In this chapter a new high-precision technique for dispatching real-time tasks is
developed. The technique is based on a double-interrupt approach and works to
counteract the temporal variability resulting from the CPU’s level-1 data and
instruction caches.
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B Dynamic Time-Based Scheduling

In real time systems, relative timing constraints may be imposed on task exe-
cutions, in addition to the release time and deadline constraints. Periodic tasks
might also have jitter constraints between the start or finish times of any two
consecutive executions [12].

This paper addresses the problem of scheduling and dispatching real-time
tasks with inter-task temporal dependencies. An ordered set of N jobs is as-
sumed to be given within a scheduling window and this ordering is cyclically
repeated at runtime. An off-line scheduler is presented to check the schedula-
bility of the job set and to obtain parametric lower and upper bound functions
for the start times for the jobs, if the job set order is schedulable. An On-line
dispatcher algorithm is given to evaluate these bounding functions at run-time
to obtain a valid time intervals during which jobs can be started. These bound-
ing intervals are used to order ready jobs in a time-ordered list for time-based
dispatching [3].

The run-time execution timing model can be varied according to values gen-
erated by executing tasks, or system state to change the parametric functions
calculated by the off-line scheduler at pre-runtime, and evaluated by the on-line
dispatcher at run-time.

B.1 Introduction

Real-time systems are characterized by the presence of timing constraints on the
computations carried out by the system. The timing constraints are statically
determined at pre-runtime from the characteristics of physical systems they in-
teract with. A special class of real-time systems, named hard real-time systems,
require that the timing constraints be guaranteed prior to execution, since the
result of a timing failure may lead to unstable or undesirable system behavior.

Many real-time systems are constructed in the form of a cyclic executive
model in which the application tasks are dispatched according to a predeter-
mined periodic schedule named the calendar. The calendar lists the tasks and
their start times, or valid intervals to start the tasks executions. At run-time,
the dispatcher uses the calendar to dispatch tasks at their pre-determined start
times. This approach is particularly suitable for periodic activities which often
constitute the major part of the load in many real-time systems.

While the problem of guaranteeing timing constraints in hard real-time sys-
tems has received significant attention, few techniques have addressed the prob-
lem of guaranteeing inter-task temporal dependencies such as relative timing
constraints. Most real-time scheduling techniques consider the scheduling of
real-time tasks with ready times and deadlines [4, 5, 16, 11, 14, 6, 8, 7]. These
constraints impose constant intervals in which a task must be executed. In con-
trast, in the presence of relative time constraints, the time window within which
a task must execute may depend on the scheduling of the other tasks in the sys-
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tem. Some scheduling systems consider scheduling the problem of scheduling
aperiodic tasks with relative timing constraints [9, 12].

In this section we briefly describe two scheduling schemes closely related to
ours. The first one is the static cyclic scheduling scheme [2] and the second one
is the parametric scheduling scheme {10].

B.1.1 Static cyclic scheduling

The static cyclic scheduling problem has been studied in [2]. The periodic task
model is used, which means that every job has a release time and a deadline
constraints, and only the jitter constraints between two job start times are
allowed. An important assumption made in the work is that the start times
of jobs in IV are statically determined as offsets from the start of the j-th
scheduling window [(j — 1)L, jL], and this schedule is invoked repeatedly by
wrapping around the end point of the current schedule to the start point of the
next. In other words, si™* =/ + L holds for all 1 < j.

In the presence of jitter constraints, the job start times should be chosen
carefully such that the jitter constraints are satisfied at run-time as well as the
absolute constraints. Obtaining the ordering and job start times is an NP-hard
problem, since non-preemptive scheduling problem with release time and dead-
line constraints is NP-hard. Several priority based non-preemptive scheduling
algorithms are presented and their performances are compared in [2].

Suppose that ajob 77, belongs to I/, and a job Tfjl belongs to I'V+1, and they

have jitter constraints ¢; < sf:jl - sgl <e (0 < ¢ <eg <L) From the above
assumption, sfjl =L+ s{z holds. Thus, a new constraint is created, ¢; — L <
s{z —-sfl < ¢3 — L, which is again equal to L—¢; < s{l — SL < L —e¢y. Therefore,
the jitter constraints across the boundary of I'¥ and I¥*! are transformed into
jitter constraints between two jobs in I¥. As a consequence, if we can find a
static schedule for IV that satisfy the above transformed constraints and the
constraints between jobs within T, it is clear that all timing constraints will
be satisfied if that schedule is repeatedly used at run-time. This approach is
depicted in Figure 10.

However, this approach suffers from the following limitations:

e The relative constraints allowed are limited to jitter type constraints be-
tween start times of two jobs.

e The schedulability of job sets are reduced due to the static start time
assignments.

o It is very difficult to effectively incorporate dynamic tasks, such as aperi-
odic tasks, into a schedule by dynamically adjusting the start times of the
jobs.
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relative constraint

Figure 10: Static Cyclic Scheduling

In some real-time applications, the jitter constraints may be imposed between
the finish times of the jobs rather than between the start times [1]. Further-
more, a periodic task may be decomposed into several subtasks and any kind
of standard constraints may be defined between these subtasks [10]. In these
cases this static scheduling approach is no more applicable without sacrificing
the schedulability [10].

By transforming the jitter constraints across the boundary of IV and IV+!
into those between jobs within I/, we are affecting the schedulability of job sets.
We will show that, under our new scheduling scheme in which this transforma-
tion is not necessary, the schedulability of job sets is increased, i.e., some job
sets are not schedulable according to this scheme whereas it is schedulable by
our scheme.

B.1.2 Parametric scheduling

Gerber et al. [10] proposes a parametric scheduling scheme in the scope of
transaction scheduling, in which any standard constraints may be given between
Jobs in one transaction. Let Il =< 7,...,7ny > denote a sequence of jobs
constituting one transaction with a set of standard constraints, C. Then, a
schedulability of II is defined as follows:

Sched = 3s; ::Vey € [ly,u1] ... 138y =2 Vew € [y, un] = C (2)

From this Sched predicate, parametric lower and upper bound functions for
each start time s; are obtained by eliminating the variables in an order e N, SN,
-+ €;. The parametric lower and upper bound functions, denoted as f;’fi” and
F%%, are parameterized in terms of the runtime variables, s1, e, ..., si_1,
e;—1 of already executed jobs. The parametric calendar structure is shown in
figure 11.
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Fr() < s < FRe()
f;’;m(sl,el) S S9 S f;’;”(sl,el)
F™(s1,e1,50,€2,...,5N-1,EN-1) < SN < F*(sy,e1,89,€3,...,5N_1,6N_1)

Figure 11: Parametric Calendar Structure

This parametric calendar is obtained from an off-line component of the al-
gorithm by applying variable elimination techniques that will be given later in
this section, and the actual bounds of s; are found at runtime by evaluating the
parametric functions in the parametric calendar by using the start times and
the finish times of already executed jobs, 71, ..., 7;_1. The actual form of these
parametric functions are given in the following proposition.

Proposition 1 (Parametric Bound Functions [10] ) A parametric lower
bound function for s; is of the following form:

f;?in(sl»fly ey 81, fi-1)
= max(pl+cl,p2+c2,...,pa+ca,a;-"i") (3)

where each p;, 1 < i < a, belongs to {s1, f1,...,5j—1, fi—1}, and ¢; is an arbi-
trary constant.® And, a** 1is a non-negative integer.
Similarly, a parametric upper bound function for s; is of the following form:

Fo¥(s1, fry 0 85-1, fi-1)
= min(q1 -+ dl,qg =+ dz, o @y + db,a;na:c) (4)

where each ¢;, 1 < @ < b, belongs to {s1, f1,...,8j_1, fi—1}, and d; is an arbi-
trary constant..

The main result obtained by the paper is that, for an arbitrary set of stan-
dard constraints on II = {m,..., 7§}, we can find the parametric calendar in
O(N?3) time and the run-time evaluation of each bound function can be carried
out in O(N) time.

By applying this parametric scheduling scheme, we are not only able to
schedule any sequence of jobs with standard constraints, but also able to take
advantage of the flexibility offered by the scheme. That is, the job start times
may be decided dynamically at runtime to incorporate other dynamic activities
in the system. Even though this scheme is directly applicable to our k-fold
cyclically constrained job sets, if the number of jobs in I''** becomes large, the
bounds need to be found on the size of parametric functions and for the memory
requirements for them. The Process of variable elimination is discribed in [12].

SNote that f; = s; + e;.
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B.2 Maruti Programming Environment

Building a Maruti application is a process that consists of a set phases, beginning
with the coding of the Maruti programming language (MPL) which is used to
develop individual program modules, and Maruti configuration language (MCL)
which is used to specify how individual program modules are to be connected
together to form an application and the details of the hardware platform on
which the application is to be executed [15]. The life-cycle of an application in
the Maruti environment can be divided into following phases Figure 12.

Design

V
Development Phase

Compilation »{  Integration

\

Operational Phase

Initialization Execution

Figure 12: Maruti Application Life Phases

B.2.1 Design Phase

This stage is the starting point of the development of an application during
which the overall design is carried out. The tasks layout and their timing re-
quirements are specified [13].

B.2.2 Development Phase

This phase is broken down into two stages, namely compilation, and integration.

o Compilation. The source code modules created at this stage, along with
their interface specifications. The resource requirements and the relative
timing constraints for the modules are identified at this level, and are
supplied to the integration environment.
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o Integration. In this stage, modules created in the compilation stage are
interconnected to form a complete program. The resource requirements
for the application are identified and recorded with the application. The
timing characteristics of the application is captured in the form of para-
metric functions that are passed to the dispatcher to be evaluated at run
time.

The result of this phase is an executable application program, along with its
resource and timing requirements [13].

B.2.3 Operation Phase

In this phase resource allocation, dispatching, execution for the tasks occur.
It is initiated after an invocation request is made. This phase consists of two
stages, dispatcher initialization and task execution.

o Dispatcher initialization. The Maruti on-line dispatcher loads the para-
metric functions for the invoked application tasks, and constructs the dy-
namic calendar that is used to dispatch the tasks in a timely manner.

e FEzecution. During this stage the operating system kernel performs dis-
patching, message passing, and reservation enforcement. Previous stages
prepare the application for this stage, so that the timing requirements for
the application are met, and the run-time overheads are minimal. The ac-
tual running time for each task instance is recorded as a form of feedback
for the off-line scheduler to be used in generating more accurate calendars.

The resource requirements and timing information are identified and tracked as
the application progresses through its life cycle, and are explicitly used during
run time [13].

B.3 Model Description

This section describe the different modules of the scheduling-execution model
and their scheme of execution and information passing Figure 13. The dynamic
time-based scheduler consists of the following modules

B.3.1 Off-line scheduler

The off-line module accepts an ordered set of tasks along with their timing
requirements such as ready time, deadline, period jitters, and relative timing
constraints among the different tasks. It uses this information to generate a
dynamic calendar.
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(e.g. Task Execution History) (e.g. Physical System State)

Figure 13: Operation Model of the dynamic time-based scheduling system

B.3.2 Dynamic calendar

The dynamic calendar contains information about the task instances and their
timing dependencies in the form of functions whose parameters are values gener-
ated at run-time, such as internal system states, external system physical state,
or previous task instances actual execution times. The parametric functions
produce the minimum and maximum starting times for the different task in-
stances as their output. The calendar also include a pointer to the first task
instance to be executed.

B.3.3 On-line Dispatcher

This module executes as part of the operating system kernel. It is initiated
after an invocation request for the application is made. It starts by loading the
dynamic calendar generated by the off-line module and uses the pointer in the
dynamic calendar to dispatch the first task for execution. The on-line module
remains active at run-time, filling in the values of the functions’ parameters
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by values generated at run-time. It uses the times generated by these function
to start the execution of the task instances according to their original timing
constraints. The execution times of the different tasks are used as parameters
for the functions of the parametric functions as well as a feedback for the off-line
component, to be used as estimates for tasks execution times.

B.4 Off-line Scheduler

As in the parametric scheduling approach developed for transaction schedul-
ing [10], we want to devise a schedulability test and an efficient dispatching
mechanism when an oo-fold cyclically constrained job set, I''»* is given with
its constraint matrices and vectors. We say I'l:* | is schedulable if there exists
any method which can successfully dispatch the jobs in T'l:¥,

Definition 1 (Schedulability of T''*) The k-fold cyclically constrained job
set TVF (1 < k) is schedulable if the following predicate holds:

sched'® = st Vel €[l ul]:3sd : Vel € [13,u3] o ...
3k, 0 vek e [k, uk] o ctE (5)
where C1* is a set of standard constraints defined on {si e}, .. .,5’1“\,, efv}.

Then, the following proposition holds for all £ > 1.

Proposition 2

Vk > 1 :: sched"¥*t' = sched*

Proof: Obvious from the definition of a cyclically constrained job set and from
the definition of sched"* in (5).

Hence, once sched"* turns out to be False, then all sched™’, k < j, are
False, too. By this proposition, the schedulability of T'** is defined.

Definition 2 (Schedulability of I'''*®) T'1:* is schedulable if and only if

lim sched'* = True
k—o0
In [10], 1t is shown that checking Predicate (2) is not trivial because of the
nondeterministic job execution times and because of the existence of standard
relative constraints among the jobs. This applies to the above sched"* pred-
icate, too. The variable elimination techniques are used in [10] to eliminate
variables from Predicate (2). At the end of the variable elimination process
parametric bound functions for s;, that are parameterized in terms of the vari-
ables in {s1,€e1,...,€ei—1}, are found as well as the predicate value.
However, if we want to apply the variable elimination technique to sched"*,
the following problems have to be addressed first:
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1. On which subset of {s},e1, ..., s{_l, ef:_l} does the parametric bound func-
tions for s} depend?

2. Is it required to store parametric bound functions for every job in I'*:¥?

3. What parametric bound functions have to be used if k is not known at
pre-runtime and dynamically decided at runtime?

Let f:}in’k and f:}”’k denote parametric lower and upper bound functions

for 51, respectively, that are found after the variable elimination algorithms are
applied to sched"*. If the number of variables is unbounded with which f:?’n’k

t

or f;?az'k is parameterized, then it is not possible to evaluate them at run-

time within bounded computation times. Also, if it is required that parametric
bound functions for every job in I''"* be stored at runtime, the scheme is not
implementable for large k because of memory requirements. Finally, if the value
of k is not known at pre-runtime and is decided dynamically at runtime, which
is true in most real-time applications, the parametric bound functions to be
used have to be selected.

In this section, the answers to the above questions are sought by first trans-
forming sched* into a constraint graph and by investigating the properties of
such graphs.

B.4.1 Transforming a constraint set into a constraint graph

We want to apply the variable elimination algorithms to sched** for some fixed
k,and want to find out answers to the previously raised three questions. For that
purpose, we first transform the predicate into a constraint graph and apply node
elimination algorithms(corresponding to the variable elimination algorithms) to
the graph. Then, the properties of the constraint graphs created during the
node elimination process are examined. Working on constraint graphs, instead
of constraint sets themselves, makes it easier to infer and prove useful properties.
In this section, the transformation rules are given for a set of jobs and its
associated constraint set.

Let I = {r,7,...,7x} be a finite set of jobs with a set of standard con-
straints, C. Consider eliminating quantified variables from the following predi-
cate:

Sched = 3s; 1 Yeq € [l1,w1] ... 3sy = Yen € (In,un]: C

Then, predicates on subsets of {s1,e;,...,sn, en} are defined next that are
found after eliminating variables.

Definition 3 Sched(s,)(1 < a < N) is defined to be a predicate on a set of
variables {s1,e1,...,54} that are found after eliminating variables of < fn, sn, .
from Sched. Sched(e,) is defined similarly.
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That is, Sched(s,) can be expressed as
Sched(sq,) = 3sy =t Vey € [ly,ug] ... 354 0 C(s,)

It will be shown that Sched(or Sched(s,), or Sched(e,)) can be transformed
into a directed graph, which is called a constraint graph, such that the variable
elimination process can be mapped into a corresponding node elimination oper-
ation in the graph. Note that, in the following definition of a constraint graph,
semi-ezclusive-ORed edges are defined. Also, v; — vy denotes an edge from a
node vy to a node vy with a weight w, and < v, Iy 22 wf“‘ v; > denotes
a path from a node v; to a node v; with a weight sum w = Z;_:ll wi. v~ Y
denotes that there exists a path from v; to v;, and v; ~» v; denotes that there
exists a path from v; to vy whose weight sum is w.

The following rule is used to transform a predicate into a constraint graph.

Definition 4 (Constraint Graph) A constraint graph G(V, E) is found from
Sched (or Sched(s,), or Sched(e,)) as follows:

1. node set V s obtained as follows:

e 1y eV
e 5, fi €V for1 <i< N where f; = s; +¢;.

2. edge set E 1s obtained as follows:

e For each tuple < s;,f; >, add the following semi-exclusive-ORed
edges to E:
I
(a) si — f;
() f; — s
e For each constraint in C that can be converted to:

(a) v, —v; < ¢ (vi,vj €{si,fi|1<i<N}): add v; ——E—+v,- to E.

() v; <c:  add vy == v; to E.
(c) —v; <ec: addv; — vy 1o E.

Definition 5 The constraint graph found from Sched(s,) is denoted as G(s,).”
Similarly, G(f,) represents a graph found from Sched(e,).

Figure 14 shows a graph created from an example job set I'''2. Note that
vp is an extra node created to represent a constant 0 that is used to specify
absolute constraints such as the release time and the deadline constraints. In
the figure, the edges connected by & are semi-exclusive-ORed edges.

"The full notation would be G{s2)(V, E). But, if no confusion is caused, G(sq) will be used
in this chapter.
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Figure 14: Constraint Graph for I'!+2

Note that there may exist only one edge from one node to another from the
uniqueness of inequality in the constraint set. For example, if there are two
constraints vy — v3 < ¢; and v; — v2 < ¢o in C, then one of them is redundant.
Therefore, we can denote an edge from v; to vy in a constraint graph as v; — v,
without its weight specified. Also, note that any edge from f; to s; is semi-
exclusive-ORed to any edge from s; to f;. That is, even if any of these two
edges is created from another constraint in C rather than from the minimum or
maximum execution time constraint, they are semi-exclusive-ORed.

The elimination algorithm of a node f, from a graph G(f,) is presented
next.

Algorithm 1 (Elimination of f, from a Graph G(f,)) Elimination of f,
from G(fa) is performed by the following algorithm.

1. For each edge pair, < y — fo, fa —2 s, >, that are not semi-exclusive-

ORed in G(f,):

wit+w
e create an edge y " s,.

(a) If y= s, and wy + wy < 0, then return False.®
() If y= s, and wy + wy > 0, then remove this edge.®

(c) If there already exists an edge y — s, before creating y Wity

Sa, then the edge with less weight remains, while the other is
removed.

2. For each edge pair, < s; —> fa, fa —2 2 >, 2 # 8,4, that are not semi-
ezclusive-ORed in G(f,):

wi+w
o create an edge s, %" z

8This is because y—y=0< w; + wy <0 is a contradiction.
9This is because y — y = 0 < w1 + we is a tautology.
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(a) If there already exists an edge sq L, 2 before creating s, Wity z,

then the edge with less weight remains, while the other is re-
moved.

3. Set V=V —{fa} and remove all edges to or from f, in G(fa).

Let Elim(G(f,), fa) denote a new graph created after eliminating f, from
the graph G(fa) according to Algorithm 1 in case False is not found. In [3] it
is shown that Elim(G(f.), fo) is equivalent to the original graph G(f,).

Next, we show how a node corresponding to an existential quantifier s, may
be eliminated from the graph G(s,).

Algorithm 2 (Elimination of s, from a Graph G(s,)) Elimination of s,
from G(s,) is performed by the following algorithm.

1. For each edge pair, < y —5 54,8, —2+ z >, in G(s,):

wi1+wo
e create an edge y —" z.

(a) If y=2z and wy + wy <0, then return False.
(b) If y =z and w; + wy > 0, then remove this edge.

(c) If there already exists an edge y — z before creating y witys 2,

then the edge with less weight remains, while the other is re-
moved.

2. Set V=V —{s.} and remove all edges to or from s, in G(s,).

Similarly, let Elim(G(sa),s.) denote a new graph created after eliminating
sq from the graph G(s,) according to Algorithm 2 in case False is not found. In
[3] it is shown that Elim(G(sa.), s4) is equivalent to the original graph G(s,).
The elimination process of nodes, f, and s,, from the graph G(f,) can be
viewed as preserving the connectivity between any two nodes in {vo, s1, f1, - -, 8a=1, fa=1}
through f, and s, in G(f;). That is, if there exists any path from y to z only
through s, and f, in G(f,), then a new edge from y to z is created to maintain
the connectivity from y to z even after f, and s, are eliminated.
Figure 15 shows a graph and its node elimination processes for sched!>? that
is derived from I'!:2,

The necessay condition for Sched to be true is the existence of a negative
weight cycle in the constraint graph [3].

B.4.2 Off-line component

In this section, a 4N-node graph, called basis graph, is obtained to which we
can cyclically apply variable elimination algorithm without explicitly obtaining
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Figure 15: Elimination of fZ and s2 from I'!:2

a large constraint graph G*(f¥) for large k. That is, by recursively applying
variable elimination algorithm to this smaller graph, it can be decided whether
the created edge set sequence, ¥L*(fL), j = k,k~1,..., will converge or not.

Definition 6 (Basis Graph) A basis graph Gy(V;, E}) is defined as a sub-
graph of GY2(f%) as follows.'°

1. Vo =V3 1 UV o U {vo} where:
%,2 = {s%7f12)"'7812\71f12\[}
Vi={v|3(v—uVu—v) €G] fA)Au€ViaAv#u}

2. All edges in GY2(f%) connecting any two nodes in V; are included into
Ey.

10¢;1,2 (szv) is found from I'1:2.
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Then, the variable elimination process for a graph G1*(f¥) can be trans-
formed into an equivalent one by using a basis graph as follows:

Algorithm 3 Cyclic algorithm to obtain GV*(f%).
o Input: k, Basis Graph Gy(V3, Ep)
o Output: GV*(f%)
1. Initialize 1 = 1.
2. Initialize G},,(Vs, EL,) = Go(Vs, Ep).
3. Fromi=1 to 1=k — 2 repeat the following:

(a) Eliminate, from G, (Vi, EL,), the nodes of Vi 2 by aliernately using
Algorithm 1 and 2.

(b) If False is returned from Algorithm 1 or 2, then return False.

(c) Let G4 (Vo1 U {vo}, EL,;) denote the resulling graph.

(d) Ifi>2 and Gbyy(Va U{vo}, Eiye) = Gogd (Vn U{Vo}, Egil), then
return G%,(Vs, E},).

(¢) Let GiF1(Vo, EiTY) = Go(Vh, )

(f) For each edge vy 2 g in Gt (Vo1 U {vo}, E:.),

i. Ifvi #vg and vy #vo, add an edge g(1)(v1) Tz g(l)(vz) to
Gix® (Vi, i),
it. Ifvy = vy, addan edge g(l)(vl) wizdlL g(1)(vz) to Gﬁ:l(Vb, E'Z’;'[l .
wt. Ifvo=wvy, add an edge g;1y(v1) a2t ga)(v2) to GHY(Vy, BT,
(9) Seti=1+1.

At step 3 — (d) the graph Gi,(V5, E%,) is returned. This graph can be shown
to be equal to G1*(f%) [3]. Once we find homogeneous created edge sets on
Vb1 U {vo} at step 3 — (d),asymptotic parametric bound functions for job start
times can be found from the graph G'*(f%). From this graph the variables
in the sequence < f%,s%,..., fZ,5 > are eliminated to obtain the parametric
bound functions for each s?, 1 < i < N. During this elimination process, the
weights of edges connected to or from vy have to be modified appropriately to
reflect scheduling window index j > 2 as well as the node index of the graph.
For example,

e if an edge v -, s? is obtained after eliminating < o, 8%, .., >,
then a formula s] < w + (j — 2)L must be used in deriving asymptotic

parametric bound functions for s}.
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o if an edge s? — vg is obtained after eliminating < f%,s%,...,f? >,
then a formula —w + (j — 2)L < s} must be used in deriving asymptotic
parametric bound functions for s!.

o if an edge s} — s?, is obtained after eliminating < f%,s%,..., f2 >, then

a formula s} — 527! < w must be used in deriving asymptotic parametric
bound functions for s..

After obtaining asymptotic parametric bound functions for s7, 2 < j, we can
also find parametric bound functions for I'" by eliminating nodes from G**(f},).

The time complexity of the off-line scheduler is O(n?N3) where n is the
number of jobs in a scheduling window that have relative timing constraints
with jobs in the next scheduling window, and N is the number of jobs in each
scheduling window [3].

B.5 On-line Dispatcher

The on-line dispatcher of the scheduler processes the information transfered to it
from the off-line module, processes them to create the run-time data structures
that are used in the process of determining the dispatch time for the different
task instances. The Dispatcher can also determine the schedulability of a new
aperiodic real-time task introduced to the system at run-time. The is done
by moving task instances around in accordance with their parametric functions
to preserve total schedulability. The algorithm to insert an aperiodic task at
run-time is described in [3].

This section describes the data structures used by the on-line component,
and then explain the use of these data structures to handle the task dispatching
process.

B.5.1 Run-time data structures

Scheduling information needed for the dispatching process are transfered to
the on-line component by means of a file written by the off-line component.
This information include task descriptions, relative timing constraints in the
form of parametric functions description used to determine the minimum and
maximum bounds on the execution start times for the task instances. Run-time
information is stored in the form of a calendar of the tasks and their timing
properties. The Dynamic Calendar has two main components:

Dependency graph shown in Figure 16, it is represented as a list of tasks
that are active at the current time each node in the list contains

o Task ID
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Figure 16: Dependency Graph

o A linked list of the task instance profiles for that task, each of the
task-instance profiles contains the following information:

— Instance ID
~ Maximum execution time (WCET)

— Activation counter that describes the number of life cycles of the
task that this instance is going to remain active in

— Instance functions, alist of parametric functions, each containing
a pointer to function code, a list of the function parameters,
and an Evaluation counter for the unresolved parameters in the
function.

— Result lists, which are lists of pointers (Evaluation pointers) to
the locations of parameters for the parametric function of other
task instances, these pointers indicate that values from this task
instance are the actual parameters for the formal parameters in
the other task instance functions. A separate list is maintained
for each value to be propagated.

Time ordered list A time ordered list of task instances is maintained by the
run-time module, its entries represent task instances that the run-time
module have full knowledge about their execution profile, that is the pa-
rameters to their parametric functions are all satisfied and the functions
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are evaluated to yield an absolute time to start the execution of the task
instance. Entries in. the TOL consist of the absolute minimum and maxi-
mum times that this task instance can start its execution. It also include
a pointer to the task instance profile in the dependency graph. Entries in
this list are ordered according to their earliest starting times.

B.5.2 Run-time execution model

The dispatcher propagates parameters of the parametric functions, and dis-
patches the correct task instance according the calendar generated by the off-line
component. The run-time module starts by processing the Calendar informa-
tion passed by the off-line component in the form of parametric functions, the
scheduling information is stored at run time in the dependency graph. The TOL
is initialized with one task instance, which is the task marked by the off-line
scheduler to be executed first, and its execution time is not dependent on time
values generated by the other task instances. Task execution phase follows the
procedure described next.

Dispatch the first task instance in the TOL, and start executing it in the
earliest possible time between its minimum and maximum start times. The
kernel schedules an interrupt at the end of the WCET of that task instance
in order to be able to gain control and maintain the schedule of the remaining
tasks execution.

After the current task instance finishes execution, kernel gains control again,
it starts by propagating the timing information generated from the finished task
instance to all the function parameters that are dependent on these values using
the results lists of these values in the task instance profile. If the unresolved
parameters counter in any one of these task instances reaches zero, this means
that the parameters to its functions are all satisfied and functions can be eval-
uated at this point. The absolute boundaries on the starting times for these
instances are calculated, and the instances are inserted in the TOL, their coun-
ters are reset to their original values in the instance profiles. The dispatcher also
maintains the information in the task-instance profiles regarding the number of
cycles the instance is going to be active in, this counter is decremented every
time the instance is executed. If this counter was initialized with a negative
value, this will cause the dispatcher to run this task periodically for as long as
the operating system kernel is running this particular application. The on line
dispatcher time complexity is O(N).

The main steps for the On-line dispatcher is shown in the following algo-
rithm.
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Algorithm 4 On-Line Dispatcher.

1. Load the dynamic calendar by tasks parameiric functions.
2. Insert the first task instance in the TOL.
3. while (TOL not empty) {

(a) Get first task instance in TOL (I ,p ).

(b) Schedule a time interrupt to occur immediately after syop+W CET (I10p).
(c) Yield control to Iyop.

(d) When I,op finishes or the scheduled interrupt occurs

Stop the ezecution of I op if it is still running.
Record its finishing time fr,,,.
Substitute the start time s;0p in all items in its evaluation list.

Decrement the evaluation counters of all the elements on the
evaluation list of s;0p.

o Substitute the finish time fio, in all items in its evaluation lst.

o Decrement the evaluation counters of all the elements on the
evaluation list of fiop.

e If the evaluation counters of any instance reaches zero, then
— insert this instance in TOL.

— Decrement its activation counter by 1, if it reaches 0, the
instance is removed from the dependency graph.

— Restore all its evaluation counters to their initial values.

B.6 Conclusion

In this paper, a new model is developed for dynamic time-based scheduling
scheme. Using this scheduling model, it is possible to schedule more general
tasks such as periodic, or aperiodic. Tasks can execute in any general pattern
other than strict periodic, for instance the system can schedule periodic tasks
with variable inter-instance periods. The tasks scheduled by the system at pre-
runtime must show a repeated pattern in order for the scheduler to be able to
constitute the scheduling windows of the given tasks. The timing constraints
satisfiable by the system include the following:

e Ready time
e Deadline time

o Communication constraints
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o Mutual exclusion constraints
e Together constrains
o Relative timing constraints

Some of the benefits that can be achieved by the given model can be sum-
marized in the following main points:

¢ Ability to add aperiodic tasks at run-time.

Ability to schedule more general tasks.

Variation of the run-time behavior depending on values generated by exe-
cuting tasks, or system state to change the parametric functions calculated
by the off-line component at pre-runtime.

o Using parametric function makes use of the slack time to run non-real-time
tasks, or to finish the schedule as early as feasible.

The proposed model also gives some possibilities of fault tolerance by allow-
ing the operating system kernel to gain control, or update the different functions
parameters in case of failure. Some of the fault tolerance abilities that are given
by the system are:

¢ Substitution of minimum values for parameters in case of failure of task
instances generating the parameter value to keep the feasible total sched-
ule.

¢ Using the maximum execution time for the task instances to generate a
time interrupt, should the task instance execute more than the max time
allowed for it.

As future extensions to this model, different things can be further extended to
give more generality and flexibility in the scheduling capabilities of the system.
Some of these extensions are:

e The dynamic calendar functions can be parameterized by values other
than just the start or finish times of previous tasks, such as system state
variables. This can give more capabilities to support inter-task dependen-
cies, and fault tolerance.

e The scheduling model can be extended to support multi-processor sys-
tems. To do this, several issues have to be considered, such as what kind
of information have to be sent out to other nodes, and how parametric
functions can be found.
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e In this paper it is also assumed that a total ordering among tasks is found
at pre-runtime by an off-line scheduler. Previous work by Cheng et al.
[2] and Mok et al. [9] use a heuristic approach called smallest latest start
time first to schedule task instances with relative constraints. However,
their heuristics don’t fully reflect the relative timing constraints. Improved

heuristic functions may be developed if the constraint graph structure is
utilized.

e The total order and dynamic calendar were both calculated at pre-runtime.
Aperiodic real-time time tasks can also be adder to the dynamic calendar
at run-time [3]. The addition of hard real-time periodic tasks at run-time

may be further studied to find the way parametric functions are to be
changed in that case.
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